
2/4/13 Lecture outline

• Recall
∂Ufield

∂t
+

∂

∂t
Ekin + ∇ · S = 0,

d

dt

[∫

V

dV (Ufield + Ekin)

]
+

∫

∂V

~S · d~a = 0.

~S = c ~E× ~B/4π is the energy flux density. Also
∫
dV ~J · ~E is the received mechanical power.

• Examples: solenoid with İ 6= 0. Work out U = 1

2
LI2 and ~Eθ ∼ İ, so ~S ∼ −Iİr̂.

Verify energy conservation.

Now cylindrical resistor with conductivity σ, so ~J = σ ~E. Suppose I is constant, so

~E and ~B are constant. Work out ~S ∼ −r̂I2/σ. There is no change in field energy. Show
∫
~S · d~a agrees with power loss of resistor.

• For an electron, both q and ~m 6= 0, so ~S = qc~m× ~r/4πr6. Note ~S · r̂ = 0.

• Last time: capacitor charging up, Ufield ≈ 1

8π

∫
dV ~E2 = Q2/2C, and

∫
∂V

~S · d~a =

− c
4π

∆φ
∮
~B · d~ℓ = −∆φQ̇. Next example: starting up a solenoid.

• Field momentum density ~Pfield ≡ ~g = ~S/c2 = 1

4πc
~E× ~B, with ~Pfield =

∫
dV ~g. We’ll

see in relativity this ~g/~S/c2 is related to Tµν
field = T νµ

field. It is also related to thinking about

the field energy and momentum as carried by a stream of particles, photons: ~S = nγ~vγEγ,

where nγ is the photon number density, and ~vγ is their velocity and Eγ their energy.

Likewise ~Pfield = nγ~pγ . Recall that ~pγ = ~vγEγ/c
2.

Using the force law for particles qi, get

d

dt
~Pmech =

∫
dV (ρ ~E +

1

c
~J × ~B) ≡

∫
dV

∂

∂t
~Pmech.

Momentum conservation:

d

dt

[∫
dV (~Pfield + ~Pmech)i

]
+

∮

∂V

Tijda
j = 0.

Find it from using Maxwell’s equations to show

∂

∂t
gi = −(ρ ~Ei +

1

c
( ~J × ~B)i)−

∂

∂xj

Tij

with

Tij =
1

4π

(
1

2
(E2 +B2)δij − EiEj −BiBj

)

the flux of field momentum. The sign is such that e.g. Tii on a surface is the inward

pressure.
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Examples: conductor and attractive force. Current sheets (opposite sign): repulsive

force. Solenoid along the ẑ axis: Txx = Tyy = B2/8π, and Tzz = −B2/8π, and pressure

on inner surface of the solenoid is ~Fi/A = −Tij n̂
i
out, with n̂out = −r̂ the outward normal

to the inner surface of the solenoid. Upshot: an outward pressure of B2/8π.

• Field angular momentum density ~Lfield = ~r× ~Pfield. Particle’s angular momentum

density ~Lmatter = ~r × ~Pmech. Show

∂

∂t
(Lfield,i + Lmatter,i) = −

∂

∂xm

Mim,

with Mim = ǫijkxjT
field
km the field angular momentum flux. So

d

dt

[∫
dV ( ~Lfield + ~Lmatter)i

]
+

∮

∂V

Mijdaj = 0

E.g. magnetic monopole at origin and electric charge at displaced location: ~B = gr̂/r2,

~E = q(~r − ~a)/|~r − ~a|3. Compute ~Lfield,z = eg/c = nh̄/2, gives Dirac quantization.

• Example: setup from last lecture, where L = 1

2
Iθ̇2 + Q

c
Rθ̇Aθ, so pθ = Iθ̇ + QR

c
Aθ

is constant. The first term is the mechanical angular momentum. Can work out that the

second term gives the field angular momentum, ~Lfield = ẑQ
c
AθR.
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