1/30/13 Lecture outline

• Conservation laws and symmetries. Charge conservation, in differential and integral form.

• Changing \vec{E} as a source of \vec{B} : $\oint \vec{B} \cdot d\vec{\ell} = \frac{4\pi}{c}$ $\frac{1}{c}I_{encl} + \frac{1}{c}$ c $\frac{d\Phi_{elec}}{dt}$, satisfies charge conservation. Example: consider parallel plate capacitor, charging up, showing the RHS gives the same answer whether the surface has I_{encl} or has $\dot{\Phi}_{elec} \neq 0$. Illustrates

$$
\nabla \times \vec{B} = \frac{4\pi}{c}\vec{J} + \frac{1}{c}\frac{\partial \vec{E}}{\partial t}.
$$

This has charge conservation built in: taking the divergence gives $\nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t} = 0$.

• Now the potentials are $\vec{B} = \nabla \times \vec{A}$ and $\vec{E} = -\nabla \phi - \frac{1}{c}$ c $\frac{\partial \vec{A}}{\partial t}$. Gauge invariance: $\vec{A} \rightarrow \vec{A}' = \vec{A} + \nabla f$ and $\phi \rightarrow \phi' = \phi - \frac{1}{c}$ c $\frac{\partial f}{\partial t}$ preserves \vec{E} and \vec{B} . Interesting: all of physics is invariant under such changes; non-trivial in quantum mechanics. Related to charge conservation.

The equations to solve are now

$$
-\nabla^2 \phi - \frac{1}{c} \frac{\partial}{\partial t} \nabla \cdot \vec{A} = 4\pi \rho
$$

$$
-\nabla^2 \vec{A} + \nabla (\nabla \cdot \vec{A}) + \frac{1}{c} \frac{\partial}{\partial t} \nabla \phi + \frac{1}{c^2} \frac{\partial^2 \vec{A}}{\partial t^2} = \frac{4\pi}{c} \vec{J}.
$$

Coulomb gauge: $\nabla \cdot \vec{A} = 0$; gives $\phi(\vec{x}, t) = \int dV' \rho(\vec{x}', t)/|\vec{x} - \vec{x}'|$, instantaneous (bad with relativity). Lorentz gauge: $\nabla \cdot \vec{A} + \frac{1}{c}$ c $\frac{\partial \phi}{\partial t} = 0$ (preserved by Lorentz transformations, so nice in relativity).

• Examples showing need for \vec{P}_{field} and \vec{L}_{field} . Example of solenoid with charge Q at radius R, show $L=\frac{1}{2}$ $\frac{1}{2}I\dot{\theta}^2+\frac{q}{c}$ $\frac{q}{c}\dot{\theta}RA_{\theta}$, with $2\pi RA_{\theta} = \Phi_{mag}$, the magnetic flux. So $p_{\theta} = I\dot{\theta} + q\Phi_{mag}/2\pi c$ is a constant in t. If the wire in the current stops, $\dot{\theta}$ compensates for reduced Φ_{mag} , the thing starts spinning. Also see it from the angular momentum impulse from the torque from the EMF from $\mathcal{E} = -\frac{1}{c} \dot{\Phi}_{mag}$.

• Energy flow. The field energy density is $\mathcal{U}_{field} = (\vec{E}^2 + \vec{B})/8\pi$. Note that

$$
\frac{\partial \mathcal{U}_{field}}{\partial t} = \vec{E} \cdot (\frac{c}{4\pi} \nabla \times \vec{B} - \vec{J}) - \vec{B} \cdot \frac{c}{4\pi} \nabla \times \vec{E}.
$$

$$
\frac{\partial \mathcal{U}_{field}}{\partial t} = -\vec{J} \cdot \vec{E} - c \nabla \cdot \frac{\vec{E} \times \vec{B}}{4\pi}.
$$

Note $\vec{J} \cdot \vec{E} = \frac{d}{dt} \mathcal{E}_{kin}$ (since $q\vec{v} \cdot \vec{E} = \vec{v} \cdot \frac{d\vec{p}}{dt} = dE_{kin}/dt$), so energy conservation is

$$
\frac{d}{dt} \left[\int_V dV (\mathcal{U}_{field} + \mathcal{E}_{kin}) \right] + \int_{\partial V} \vec{S} \cdot d\vec{a} = 0.
$$

 $\vec{S} = c\vec{E} \times \vec{B}/4\pi$ is the energy flux density. Also $\int dV \vec{J} \cdot \vec{E}$ is the received mechanical power.

• For an electron, both q and $\vec{m} \neq 0$, so $\vec{S} = qc\vec{m} \times \vec{r}/4\pi r^6$. Note $\vec{S} \cdot \hat{r} = 0$.

• Examples. Charging capacitor: show $U \approx \frac{1}{8\pi}$ $\frac{1}{8\pi} \int dV \vec{E}^2 = Q^2/2C$, and $\int_{\partial V} \vec{S} \cdot d\vec{a} =$ $-\frac{c}{4\pi}\Delta\phi\oint\vec{B}\cdot d\vec{\ell} = -\Delta\phi\dot{Q}$. Next example: starting up a solenoid.