
1/28/13 Lecture outline

⋆ Finish chapter 5, start chapter 6.

• Last time, E = q−1
∮
~F · d~ℓ = −1

c
dΦ
dt
, and ∇ × ~E = −1

c
∂ ~B
∂t

.

• Recall from before that a magnetic dipole ~m in an external ~B has Udipole = −~m · ~B.

This raises the question about magnetic fields doing no work. Indeed, the mechanical work

done to bring a current loop ~m into ~B balances the EMF needed to keep the current loop

going. Adding the work needed to keep ~B going, get Utot = +~m · ~B. Show it:

Bring current loop in from infinity, in the presence of a big coil, which makes ~Bcoil.

Can instead treat the loop as fixed, and bring in the coil. Say ~vloop = vloopx̂, Then in time

dt, ∆Φloop = Aloop∂xBzvloopdt, so E = −Aloopc
−1∂xBzvloop. This E means that work is

required to keep the current I constant, ∆Wemf,loop = −I∆tE = +m∂xBzvloop∆t, where

m is the magnetic moment of the current loop. There is also the force we mentioned

before ~F = ∇(~m · ~B) associated with moving a dipole in an inhomogeneous ~B, and

some mechanical work is required to push against that, ∆Wm = −m∂xBzvloopdt. So

∆We,loop + ∆Wm = 0, as expected, from the fact that magnetic fields do no work on

microscopic particles, ~v·(~v× ~B) = 0. Likewise for the coil, ∆We,coil+∆Wm = 0 (same ∆Wm

since the forces are equal and opposite). So ∆Wtot = ∆We,loop+∆We,coil+∆Wm = −∆Wm

and Utot = −Um = +~m · ~B. More generally, writing d~m = Id~a/c, get

Utot =
I1
c

∫

S1

~B2(~r1) · d~a1 =
I1
c

∮

∂S1

~A2(~r1) · d~ℓ1

Replace Id~ℓ → ~JdV and divide by half to avoid double counting

Utot =
1

2c

∫
dV ~J · ~A =

1

8π

∫
dV (∇ × ~B) · ~A =

1

8π

∫
dV ~B2.

• Another argument: ∆J → ∆B → ∆E, which oppose ∆J , so work required,

∆W = −∆t

∫
dV J · E =

c∆t

4π

∫
dV ~E · (∇ × ~B) =

∆t

4π

∫
dV ~B ·

∂B

∂t
= ∆

∫
dV

B2

8π
.

• Inductance: Utot =
∑

a Uaa + 1

2

∑
a6=b Uab, where

Uaa =
1

2c

∫
dV ~Ja · ~Aa =

1

2c2

∫
dV

∫
dV ′

~Ja(~r) · ~Ja(~r
′)

|~r − ~r′|

and likewise for Uab, but without the
1

2
. Now Utot =

1

2

∑
ab LabIaIb, with Lab ≈

1

c2

∮ ∮
d~ℓ ·

d~ℓ′/|~r−~r′|. Note Lab = Lba. Also flux through loop a from current in loop b is Φa = cLabIb,

1



so EMF is Ea = −Labİb. Units: U = 1

2
LI2 in either set, so LSI = µ0c

2

4π
LGau = 1

4πǫ0
LGau,

and LSI is in Henry units, with 1Henry = 1

9
× 1011 Gaussian units.

E.g. solenoid of length h, and n turns/length and radius R has Bin ≈ 4πnI/c, so

U =
∫
B2/8π = 1

2
LI2, with L = h(2πnR/c)2.

E.g. let R1 be the radius of a small loop and R2 that of a big loop, which are

concentric and in a plane. Use Φa = cLabIb: flux of the big loop’s I through the small one

is πR2
1
(2πI2)/cR2 so the mutual inductance is L12 ≈ 2π2R2

1
/c2R2 (for R1 ≪ R2). Note

L12 = L21, even though it isn’t obvious (because of the limit).
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