
1/23/13 Lecture outline

⋆ Finish Garg chapter 4, start chapter 5.

• Last time, magnetostatics:

~A(~x) =
1

c

∫
d3~x′

~J(~x′)

|~x− ~x′| ,

~B(~r) =
I

c

∮
d~ℓ′ × (~r − ~r′)

|~r − ~r′|3 =
1

c

∫
d3~x′

~j(~r′)× (~r − ~r′)

|~r − ~r|3

E.g. for current loop, field on axis is Bz = 2πR2I/(c(R2 + z2)3/2.

• Recall, ∇ · ~E = 4πρ→ ( ~E1− ~E2) · n̂ = 4πσ. Likewise, ∇× ~B = 4π ~J/c→
∮
~B ·d~ℓ =

4πIencl/c→ n̂× ( ~B1 − ~B2) = 4π ~K/c. Also, ( ~B1 − ~B2) · n̂ = 0. E.g. infinite current sheet.

• Standard example (qual, often): a hollow spherical shell of radius a and uniform

charge density σ is spinning with angular velocity ω. Find ~B and ~A everywhere. Solution:

~A(~x) =

∫
σa2dΩ′ωaẑ × ~x′

c|~x− ~x′|

since ~K = σ~v = σ~ω × ar̂. Evaluate the integral using the spherical harmonic expansion of

1/|~x− ~x′|, noting that the integral projects to ℓ = 1. Get

~A(~r) =
~m× ~r

r3
(r > a), ~A(~r) =

~m× ~r

a3
(r < a).

~m = 4π
3

~ωσa4

c
. Find ~B outside is a magnetic dipole, and ~B inside is a constant.

• Magnetic scalar potential: in regions where ~J = 0, can write ~B = −∇φmag, with

φmag =
∫
d3~r′ ~M · ∇ 1

|~r−~r′| . For the above example, get ~M = ~m/(4πa3/3).

Faster: It is clear from the symmetry that this has ℓ = 1 only, from the vector ~ω

source. So φm = C cos θ/r2 outside and φm = −Dr cos θ = −Dz inside. This gives, with

~m ≡ Cẑ, and ~D = Dẑ,

~Bout =
3(r̂ · ~m)r̂ − ~m

r3
, ~Bin = ~D.

Impose ~Br̂ must be continuous at the surface, so ~D = 2~m/a3. At the surface, r̂× ( ~Bout −
~Bin) = −3r̂ × ~m/a3 = 4π ~K/c, which determines ~m, giving the same answer as above.

Note: right answer comes from imposing continuity of ∂rφmag. If we instead impose

continuity of φmag would give the wrong answer, ~Bwrong
in = −~m/a3 = Bright

in − 3~m/a3.

1



Recall ~Bwrong− ~Bright = −4π ~M , as we saw last time for the point dipole case ~M = ~mδ(~r).

Will come back to this later, with magnetized materials.

• Recall ISI =
√
4πǫ0IGau and ~BSI =

√
µ0

4π
~BGau (likewise for ~A). So ~mSI =√

4π
µ0

~mGau, to have U = −~m · ~B the same. The SI unit of ~B is the tesla, while the

Gaussian unit is the gauss, with 1 tesla = 104 gauss.

• Magnetic flux Φ =
∫
S
d~a · ~B =

∮
∂S

~A · d~ℓ. E.g compute
∮
∂S

~A · d~ℓ around a solenoid.

• Aside for later: ~F = q ~E+ q
c~v× ~B can be obtained from L = L0+

q
c
~A ·~v− qφ (which

is nicely relativisitic). Get ~p = ~p0 +
q
c
~A. Gives d~p0

dt
= q ~E + q

c
~v × ~B.

• Dirac-Aharonov-Bohm effect: ψ ∼ eiS/h̄ → phase difference eΦ/h̄c around a

solenoid. Dirac quantization of electric and magnetic monopole charge.

Induced electromagnetic fields

• Define EMF E = q−1
∮
~F · d~ℓ. Faraday’s result: E = −1

c
dΦ
dt . (Minus sign = Lenz’s

rule, EMF in direction opposing the flux change.)

This is the basis for how power companies make our electricity, and for electric motors:

turning wires, in the presence of some magnets.

Φ(t) can change because of changing ~B and/or changing the loop itself, the result

holds in any case. When the loop is fixed, it follows from ∇ × ~E = −1

c
∂ ~B
∂t .

• Example: moving arm with velocity ~v in presence of constant ~Bext. Compute

E = q−1
∮
~Fmag · d~ℓ = −wvB/c = −1

cdΦ/dt, where w is the moving arm width. The sign

gives the direction relative to ~B and the RHR, e.g. for ~B out of the board, E is negative

because it’s clockwise.

• Moving a fixed loop with a velocity ~v through static ~B, show dΦ
dt = −

∮
C
(~v× ~B) ·d~ℓ,

agreeing with the force from ~Fmag.

• Next time: ~B fields and energy.
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