1/23/13 Lecture outline

- \star Finish Garg chapter 4, start chapter 5.
- Last time, magnetostatics:

$$
\vec{A}(\vec{x}) = \frac{1}{c} \int d^3 \vec{x}' \frac{\vec{J}(\vec{x}')}{|\vec{x} - \vec{x}'|},
$$

$$
\vec{B}(\vec{r}) = \frac{I}{c} \oint \frac{d\vec{\ell'} \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3} = \frac{1}{c} \int d^3 \vec{x'} \frac{\vec{j}(\vec{r'}) \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r}|^3}
$$

E.g. for current loop, field on axis is $B_z = 2\pi R^2 I/(c(R^2 + z^2)^{3/2})$.

• Recall, $\nabla \cdot \vec{E} = 4\pi \rho \rightarrow (\vec{E_1} - \vec{E_2}) \cdot \hat{n} = 4\pi \sigma$. Likewise, $\nabla \times \vec{B} = 4\pi \vec{J}/c \rightarrow \oint \vec{B} \cdot d\vec{\ell} =$ $4\pi I_{encl}/c \rightarrow \hat{n} \times (\vec{B}_1 - \vec{B}_2) = 4\pi \vec{K}/c$. Also, $(\vec{B}_1 - \vec{B}_2) \cdot \hat{n} = 0$. E.g. infinite current sheet.

• Standard example (qual, often): a hollow spherical shell of radius a and uniform charge density σ is spinning with angular velocity ω . Find $\vec{B}~$ and $\vec{A}~$ everywhere. Solution:

$$
\vec{A}(\vec{x}) = \int \sigma a^2 d\Omega' \frac{\omega a \hat{z} \times \vec{x}'}{c|\vec{x} - \vec{x}'|}
$$

since $\vec{K} = \sigma \vec{v} = \sigma \vec{\omega} \times a\hat{r}$. Evaluate the integral using the spherical harmonic expansion of $1/|\vec{x} - \vec{x}'|$, noting that the integral projects to $\ell = 1$. Get

$$
\vec{A}(\vec{r}) = \frac{\vec{m} \times \vec{r}}{r^3} \quad (r > a), \qquad \vec{A}(\vec{r}) = \frac{\vec{m} \times \vec{r}}{a^3} \quad (r < a).
$$

 $\vec{m} = \frac{4\pi}{3} \frac{\vec{\omega} \sigma a^4}{c}$ $\frac{\sigma a^4}{c}$. Find \vec{B} outside is a magnetic dipole, and \vec{B} inside is a constant.

• Magnetic scalar potential: in regions where $\vec{J}=0$, can write $\vec{B}=-\nabla\phi_{mag}$, with $\phi_{mag} = \int d^3 \vec{r}' \vec{M} \cdot \nabla \frac{1}{|\vec{r} - \vec{r}'|}$. For the above example, get $\vec{M} = \vec{m}/(4\pi a^3/3)$.

Faster: It is clear from the symmetry that this has $\ell = 1$ only, from the vector $\vec{\omega}$ source. So $\phi_m = C \cos \theta / r^2$ outside and $\phi_m = -Dr \cos \theta = -Dz$ inside. This gives, with $\vec{m} \equiv C\hat{z}$, and $\vec{D} = D\hat{z}$,

$$
\vec{B}_{out} = \frac{3(\hat{r} \cdot \vec{m})\hat{r} - \vec{m}}{r^3}, \qquad \vec{B}_{in} = \vec{D}.
$$

Impose $\vec{B}\hat{r}$ must be continuous at the surface, so $\vec{D} = 2\vec{m}/a^3$. At the surface, $\hat{r} \times (\vec{B}_{out} - \vec{B}_{out})$ \vec{B}_{in}) = $-3\hat{r} \times \vec{m}/a^3 = 4\pi \vec{K}/c$, which determines \vec{m} , giving the same answer as above.

Note: right answer comes from imposing continuity of $\partial_r \phi_{mag}$. If we instead impose continuity of ϕ_{mag} would give the wrong answer, $\vec{B}_{in}^{wrong} = -\vec{m}/a^3 = B_{in}^{right} - 3\vec{m}/a^3$.

Recall $\vec{B}^{wrong} - \vec{B}^{right} = -4\pi \vec{M}$, as we saw last time for the point dipole case $\vec{M} = \vec{m}\delta(\vec{r})$. Will come back to this later, with magnetized materials.

• Recall $I_{SI} = \sqrt{4\pi\epsilon_0} I_{Gau}$ and $\vec{B}_{SI} = \sqrt{\frac{\mu_0}{4\pi}} \vec{B}_{Gau}$ (likewise for \vec{A}). So $\vec{m}_{SI} = \sqrt{\frac{4\pi}{4\pi}} \vec{m}_{SI}$ to have $I_{I} = -\vec{m} \cdot \vec{B}$ the same. The SI unit of \vec{B} is the tests while the $\frac{4\pi}{\mu_0} \vec{m}_{Gau}$, to have $U = -\vec{m} \cdot \vec{B}$ the same. The SI unit of \vec{B} is the tesla, while the Gaussian unit is the gauss, with 1 tesla = 10^4 gauss.

• Magnetic flux $\Phi = \int_S d\vec{a} \cdot \vec{B} = \oint_{\partial S} \vec{A} \cdot d\vec{\ell}$. E.g compute $\oint_{\partial S} \vec{A} \cdot d\vec{\ell}$ around a solenoid.

• Aside for later: $\vec{F} = q\vec{E} + \frac{q}{c}$ $\frac{q}{c}\vec{v} \times \vec{B}$ can be obtained from $L = L_0 + \frac{q}{c}\vec{A} \cdot \vec{v} - q\phi$ (which is nicely relativisitic). Get $\vec{p} = \vec{p}_0 + \frac{q}{c}\vec{A}$. Gives $\frac{d\vec{p}_0}{dt} = q\vec{E} + \frac{q}{c}$ $\frac{q}{c}\vec{v}\times\vec{B}.$

• Dirac-Aharonov-Bohm effect: $\psi \sim e^{iS/\hbar} \rightarrow$ phase difference $e\Phi/\hbar c$ around a solenoid. Dirac quantization of electric and magnetic monopole charge.

Induced electromagnetic fields

• Define EMF $\mathcal{E} = q^{-1} \oint \vec{F} \cdot d\vec{\ell}$. Faraday's result: $\mathcal{E} = -\frac{1}{c}$ c $\frac{d\Phi}{dt}$. (Minus sign = Lenz's rule, EMF in direction opposing the flux change.)

This is the basis for how power companies make our electricity, and for electric motors: turning wires, in the presence of some magnets.

 $\Phi(t)$ can change because of changing \vec{B} and/or changing the loop itself, the result holds in any case. When the loop is fixed, it follows from $\nabla \times \vec{E} = -\frac{1}{c}$ c $\frac{\partial \vec{B}}{\partial t}$.

• Example: moving arm with velocity \vec{v} in presence of constant \vec{B}_{ext} . Compute $\mathcal{E} = q^{-1} \oint \vec{F}_{mag} \cdot d\vec{\ell} = -wvB/c = -\frac{1}{c}$ $\frac{1}{c}d\Phi/dt$, where w is the moving arm width. The sign gives the direction relative to \vec{B} and the RHR, e.g. for \vec{B} out of the board, $\mathcal E$ is negative because it's clockwise.

• Moving a fixed loop with a velocity \vec{v} through static \vec{B} , show $\frac{d\Phi}{dt} = -\oint_C (\vec{v} \times \vec{B}) \cdot d\vec{\ell}$, agreeing with the force from \vec{F}_{mag} .

• Next time: \overrightarrow{B} fields and energy.