
1/16/13 Lecture outline

⋆ Garg chapter 4.

• Last time: we can always compute ~B from the curl of ~A. But in regions with

~J = 0, we can also compute it from ~B = −∇φmag. We saw that for a point magnetic

dipole: φmag = ~m · ~r/r3 or ~A = ~m × ~r/r3. Note that they give the same ~B away from

the origin, but differ by delta function contributions at ~r = 0 (where the current is hiding

for a point dipole). Follows from ∇i ∇j r
−1 = (3xixj − r2δij)/r

5 − 4π
3 δijδ(~r). Writing

~Bwrong = −∇φmag has a −(4π/3) coefficient of δ(~r) whereas ~Bright = ∇ × ~B has a

+(8π)/3 coefficient (which is the correct one).

(Aside: Q: How does φmag or U = −~m · ~Bext fit with ~Fmag = q
c
~v × ~B doing no work?

A: We’ll see it better next week, when we discuss EMF.)

• Last time: observe U = −~m· ~B and τ = ~m× ~B. Want to compare this with the torque

on a current loop. For a small square loop, it is straightforward to obtain τloop = ~mloop× ~B,

with ~mloop = I~aloop/c. Let’s now do it for a general loop: τ =
∫
~r × (Id~ℓ × ~B)/c. For

a general current density, we have ~τ =
∫
dV ~r × ( ~J × ~B)/c. Now show τ = ~m × ~B, with

~m = 1
2c

∫
dV ~r × ~J = I

2c

∫
~r × d~ℓ = I

c
~a. Need to explain the cross product rearrangement

and the factor of 1
2
. Illustrates some occasionally useful identities. Using the above, have

c~τ =

∫
dV

(
~J(~r · ~B)− ~B(~r · ~J)

)
.

We want to show this equals

1
2

∫
dV (~r × ~J)× ~B = 1

2

∫
dV

(
~J(~r · ~B)− ~r( ~J · ~B)

)
.

Use identities that follow from ∇ · ~J = 0 (to be compatible with charge conservation

∇ · ~J + ∂ρ
∂t

= 0 in the static case; fits with point charges moving at constant velocities).

Then, for localized currents and any functions f(~r) and g(~r),

∫
dV (f ~J · ∇g + g ~J · ∇f) = 0

(via integrating 2nd term by parts). Setting f = xi and g = xj , get
∫
dV x(iJj), where the

parenthesis means symmetrize. Use this to show the above (eg. for constant ~B).

• Recap: we use ~F = q~v × ~B/c to connect current loops to magnetic dipoles, with

~mloop = I~a/c = I
2c

∫
~r × d~l = 1

2c

∫
dV ~r × ~J . Now we recall the magnetic field due to ~m
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and use this relation to find ~B from I or ~J , e.g. ~B(~r) = ∇ ×
∫
Id~a′ × (~r − ~r′)/c|~r − ~r′|3.

Massage to obtain the formula of Biot and Savart

~B(~r) =
I

c

∮
d~ℓ′ × (~r − ~r′)

|~r − ~r′|3
=

1

c

∫
d3~x′

~j(~r′)× (~r − ~r′)

|~r − ~r|3

We can now show that this has ∇ · ~B = 0 and
∮
~B · d~ℓ = 4πIencl/c.

• The above is a roundabout, “scenic detour” way to Maxwell’s equation for ~B in the

magnetostatic case (∂ ~E/∂t = 0), ∇ × ~B = 4π ~J/c, where ~J =
∑

n qn~vnδ(~r − ~rn). Use

~B = ∇ × ~J and ∇ × (∇ × ~A) = ∇(∇·
~A) − ∇2 ~A, and take ∇ · ~A = 0 (using the gauge

freedom) to see that we want to solve −∇2 ~A = 4π ~J/c. We can solve this using the same

Green’s function for the Laplacian that we used last time:

~A(~x) =
1

c

∫
d3~x′

~J(~x′)

|~x− ~x′|
=

∑

n

qn
~vn

c|~x− ~xn|
.

Taking the curl then gives the above BS formula.

• Can do a multiple expansion for above expression for ~A. The monopole term van-

ishes, since ~J is has no divergence. The leading term is the dipole term, which gives

~A(~r) ≈
~m× ~r

r3
, ~m =

1

2c

∫
~r ×~j(~r)d3x.

Writing ~j =
∑

i qi~viδ(~r − ~xi), this gives ~m =
∑

i qi~ri × ~vi/2c = q~L/2Mc.

• Example: loop of current of radius a in the cos θ = 0 plane. Can evaluate the

integral for ~A in terms of elliptic integrals or the spherical harmonics (Jackson). Find e.g.

Br = (2πIa/rc)
∑∞

n=0(−1)n((2n + 1)!!/2nn!)r2n+1
< r

−(2n+2)
> P2n+1(cos θ), where r< is the

smaller of a or r, and a similar expression for Bθ. For r ≫ a, keep just the n = 0 term,

giving a dipole field with m = πIa2/c.

• Find ~B in symmetric examples, using
∮
B ·d~ℓ = 4πIenc/c, e.g. infinite straight wire,

~B = 2Iêφ/r⊥. Solenoid. Bφ for torus solenoid.
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