1/14/13 Lecture outline

 \star Garg chapter 4.

• Finish up from electrostatics: the multiple expansion dipole term $\phi^{(1)} = \vec{d} \cdot \vec{r}/r^3$ leads to

$$\vec{E}_{\vec{d}} = -\nabla \frac{d \cdot \vec{r}}{r^3} = \frac{3(\hat{r} \cdot \vec{d})\hat{r} - \vec{d}}{r^3}$$

More generally, can use

$$\frac{1}{|\vec{r} - \vec{r'}|} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{4\pi}{2\ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} Y_{\ell m}^{*}(\hat{r}') Y_{\ell m}(\hat{r})$$

$$\frac{1}{|\vec{r} - \vec{r}'|} = \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P_{\ell}(\hat{r} \cdot \hat{r}').$$

Expand the potential energy for a system of charges (say at the origin) in some external electric field: $U \approx Q\phi(0) - \vec{d} \cdot \vec{E}(0) + \dots$ This means that the dipole feels a torque from the external field, which fits with $\vec{\tau} = \sum_n \vec{r}_n \times q_n \vec{E} = \vec{d} \times \vec{E}$.

A dipole dipole interaction is $U_{dd} = (\vec{d_1} \cdot \vec{d_2} - 3\vec{d_1} \cdot \hat{r}\vec{d_2} \cdot \hat{r})/r^3$. Minimized for dipoles that are parallel to each other, and their separation – lined up head-to head.

• Segue into magnetic statics. No magnetic monopoles (yet). Magnetic dipoles, analogous to electric dipoles. Consider magnetic dipoles, \vec{m}_1 and \vec{m}_2 , located at \vec{r}_1 and \vec{r}_2 . Then

$$U(\vec{r}_{21}) = \frac{\vec{m}_1 \cdot \vec{m}_2 r_{21}^2 - 3(\vec{m}_1 \cdot \vec{r}_{21})(\vec{m}_2 \cdot \vec{r}_{21})}{r_{21}^5}$$

(In SI units, an extra factor of $\mu_0/4\pi$.) This is associated with \vec{B} : a test magnetic dipole \vec{m} in a magnetic field has $U = -\vec{m} \cdot \vec{B}$, which can be measured via the associated torque $\vec{\tau} = \vec{m} \times \vec{B}$ and force $\vec{F} = \nabla(\vec{m} \cdot \vec{B})$. So the magnetic dipole has a \vec{B} given by

$$\vec{B} = \frac{3(\hat{r}\cdot\vec{m})\hat{r}-\vec{m}}{r^3}$$

We can write this as either $\vec{B} = \nabla \times \vec{A}$ or as $\vec{B} = -\nabla \phi_{mag}$,

$$\vec{A} = \frac{\vec{m} \times \vec{r}}{r^3}, \qquad \phi_{mag} = \frac{\vec{m} \cdot \vec{r}}{r^3}.$$

Generally, ϕ_{mag} exists only regions where $\vec{J} = 0$, and has discontinuities across regions with surface currents (see below).

• Note that \vec{m} is an axial vector. As we'll see in a sec, it is created by charges with angular momentum. Indeed, $\vec{m} = q\vec{L}/2Mc$ at the classical level. For quantum spins, $\vec{m} = gq\vec{S}/2Mc$, where it follows from the Dirac equation that $g \approx 2$ (and, e.g. for the electron, the higher order corrections can be computed to fantastic accuracy in quantum electrodynamics and compared with experiment. Most accurately tested nontrivial prediction ever, in all of science).

• Fit this now with $\vec{F} = q \frac{\vec{v}}{c} \times \vec{B}$. Consider a wire element with current I, and note $d\vec{F} = Id\vec{\ell} \times \vec{B}/c$. Considering a small loop, can obtain $\tau = \vec{m}_{loop} \times \vec{B}$ and $\vec{F} = \nabla(\vec{m}_{loop} \cdot \vec{B})$, with $\vec{m}_{loop} \equiv Id\vec{a}$. Add up the \vec{B} contributions due to many \vec{m}_{loop} contributions, get an integral over an area, and use Stoke's result, writing \vec{B} in terms of $\vec{m} = \frac{I}{2c} \oint \vec{x} \times d\vec{\ell}$, which indeed has $|\vec{m}| = IA/c$.

Obtain the formula of Biot and Savart

$$\vec{B}(\vec{r}) = \frac{I}{c} \oint \frac{d\vec{\ell'} \times (\vec{r} - \vec{r'})}{|\vec{r} - \vec{r'}|^3}$$

We can now show that this has $\nabla \cdot \vec{B} = 0$ and $\oint \vec{B} \cdot d\vec{\ell} = 4\pi I_{encl}/c$.