3/13/13 Lecture outline
e Last time: S = Syatter + Sfictd + Sint, where A* appears in
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We discussed how spacetime translation symmetry, z# — x# 4 € is related to con-
servation of P* = (H, cﬁ), which are the conserved “charges” associated with the locally

conserved “currents,” the stress-energy tensor:
Pt = /deT”O conserved <+ O, T"" =0.

As we discussed, the relation between the conservation law and the symmetry is Noether’s
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theorem:

which implies
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e Time out, for a bit more detail about the stress-energy (also called the energy-

momentum) tensor. The amount of energy and momentum in an volume V' is given by:
Puzi/cﬁmel
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So the time derivative is
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where da’ is the area element pointing along the outward normal. So 7% = S? is the
Poynting vector, the energy flux. Likewise, T% is the force per area, that we studied
before. Recall that the electromagnetic force on the charges in a volume V' is given by the
Lorentz force law:
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Recall also that the field momentum in the volume V has
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As we discussed before, the conservation of total ]3tot = ﬁfield + ﬁmatter follows from

Maxwell’s equation,
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e OK, back to where we left off. Obtain

Thira = _%F“AFA + %QWF g P,
Aside: we added an improvement term 9y1)"** with ' = ﬁF #X AV which was needed to
make the stress tensor properly symmetric (needed for conservation of angular momentum,
using M*A = ghTv* — ¢¥THA. The improvement term is also needed to make Tt
properly gauge invariant. Verify that the components agree with what we found before.

Using Maxwell’s equations, we find
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For the matter part, using the Lorentz force law, we’ll show that
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For example, we recognize 2&Enatter = J - E. So the total T"/ = T tieid T Thatter 18

conserved, 0,T"" = 0. Let’s discuss the matter part more, treating it as a collection of
point particles of mass m,,, at positions 2. Then TH0 =" cpl§3(Z — T, (1)), so
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(Aside: 2ThY ... = eutu”, where € is the energy density, € = > m,,c2y~163(Z—Z,). Then

matter —
OuThY 1o = €utO,u”, since matter conservation gives d,,(eu*) = 0. ) Note that
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To summarize, we see how Tl.; is conserved, and how the field contribution can be
understood directly from the Lagrangian and Noether’s method.
e Aside: in the rest frame of a fluid, T"” = diag(e, p,p,p), where € is the energy

density and p is the pressure. The relativistic expression in a general frame is then

T" = (e + p)u — pg"”. Note that T} = € — 3p and one can show a viral theorem
e—3p=>, mpc®\/1 —v2/c2. For massless particles, e = 3p. For vacuum energy density
(cosmological constant), TH ~ gh¥ | so e = —p.



