3/11/13 Lecture outline

• Recall $A^{\mu} = (\phi, \vec{A}), j^{\mu} = (c\rho, \vec{j}).$ Lorentz force law:

$$
\frac{dp^{\mu}}{d\tau} = f^{\mu} = \gamma \frac{dp^{\mu}}{dt} = \gamma (q\vec{E} + \frac{q}{c}\vec{v} \times \vec{B}) = \frac{q}{c}F^{\mu\nu}u_{\nu}.
$$

The time component gives the power: $\gamma \frac{d\mathcal{E}}{dt}$. Maxwell's equations: $\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}$ $\frac{1}{c}J^{\nu}$ and $\partial_{\mu}\widetilde{F}^{\mu\nu}$, where $\widetilde{F}^{\mu\nu}=\frac{1}{2}$ $\frac{1}{2} \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$, or equivalently $\partial_{\mu} F_{\rho\sigma} + \partial_{\rho} F_{\sigma\mu} + \partial_{\sigma} F_{\mu\rho} = 0$; we solve the latter via $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Using transformation $F_{\mu'\nu'} = \Lambda_{\mu}^{\mu'}\Lambda_{\nu}^{\nu'}F^{\mu\nu}$, find

$$
\vec{E}_{||} = \vec{E}_{||}^{\prime}, \qquad \vec{E}_{\perp} = \gamma (\vec{E}^{\prime} - \frac{\vec{v}}{c} \times \vec{B}^{\prime})_{\perp}
$$

$$
\vec{B}_{||} = \vec{B}_{||}^{\prime}, \qquad \vec{B}_{\perp} = \gamma (\vec{B}^{\prime} + \frac{\vec{v}}{c} \times \vec{E}^{\prime})_{\perp}
$$

• Moving point charge: $J^{\mu} = c\rho \frac{dx^{\mu}}{dx^0}$, which is a 4-vector because ρ and dx^0 transform the same way. Likewise, $\rho = q\delta^3(\vec{x} - \vec{x}_0)$ makes sense, with q Lorentz invariant. E.g. $\delta^4(x^{\mu}-x_0^{\mu})$ is Lorentz invariant, and $\delta(t-t_0)dt$ is Lorentz invariant. The term $-\frac{q}{c}A_{\mu}dx^{\mu}$ in the point particle world-line action can thus be written as a spacetime volume integral − 1 $\frac{1}{c} \int d^4x A_\mu J^\mu$, which is Lorentz invariant. Note d^4x is Lorentz invariant and $\epsilon^{\mu\nu\rho\sigma}$ is Lorentz invariant for the same reason, mentioned last time: $\det \Lambda = 1$.

• Lorentz invariants: $F_{\mu\nu}F^{\mu\nu} = 2(B^2 - E^2)$ and $F_{\mu\nu}\tilde{F}^{\mu\nu} = -4\vec{E}\cdot\vec{B}$. Note that if $\vec{E} \cdot \vec{B} = 0$, then there is a frame where the field is entirely \vec{E}' or entirely \vec{B}' , depending on the sign of $F_{\mu\nu}F^{\mu\nu}$.

• Maxwell's equations as a field theory:

$$
S_{field} = \int d^4x \mathcal{L}_{field}, \qquad \mathcal{L}_{field} = -\frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu}
$$

where we impose $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. The field interacts with charges via

$$
S_{int} = -\frac{1}{c} \int d^4x A_\mu J^\mu.
$$

Varying $A^{\mu} \rightarrow A^{\mu} + \delta A^{\mu}$ and requiring that the action be stationary gives Maxwell's equations.

• The total action is $S = S_{field} + S_{matter} + S_{int}$. Spacetime translation symmetry, $x^{\mu} \to x^{\mu} + \epsilon^{\mu}$ is related to conservation of $P^{\mu} = (H, c\vec{P})$. We saw that electric charge conservation is equivalent to $\partial_{\mu}J^{\mu}=0$. Likewise, conservation of P^{μ} is

$$
P^{\mu} = \int d^3x T^{\mu 0} \quad \text{conserved} \quad \leftrightarrow \quad \partial_{\nu} T^{\mu \nu} = 0.
$$

The relation between the conservation law and the symmetry is Noether's theorem:

$$
\frac{d}{dx_{\mu}}\mathcal{L} = \frac{d}{dx^{\nu}}\left(\frac{\partial \mathcal{L}}{\partial(\partial_{\nu}A_{\lambda})}\partial^{\mu}A_{\lambda}\right) + \frac{\partial \mathcal{L}}{\partial x_{\mu}}
$$

which implies

$$
\partial_{\nu}T^{\mu\nu} = -\frac{\partial \mathcal{L}}{\partial x_{\mu}}, \qquad T^{\mu\nu}_{field} = \frac{\partial \mathcal{L}_{field}}{\partial(\partial_{\nu} A_{\lambda})} \partial^{\mu} A_{\lambda} - g^{\mu\nu} \mathcal{L}_{field}.
$$

So if there is no explicit x_{μ} dependence then the conservation equation for $T^{\mu\nu}$ is satisfied. We'll show next time how this gives the field contribution to energy and momentum densities, and how $T_{tot}^{\mu\nu} = T_{matter}^{\mu\nu} + T_{field}^{\mu\nu}$, with (only) the sum conserved.