
3/6/13 Lecture outline

• Last time: Lorentz transformation between frames, xµ′

= Λµ′

νx
ν . All 4-vectors

transform the same way, with the same Λµ′

ν . Recall boost along the x axis:

(
ct′

x′

)
=

(
γ −βγ

−βγ γ

)(
ct
x

)
, with β = v/c, γ = 1/

√
1− β2. Inverse transformation = β → −β.

• Examples of 4-vectors: xµ = (ct, ~x), pµ = (E/c, ~p), Jµ = (cρ, ~J), Aµ = (φ, ~A),

uµ = dxµ

dτ
= γ dxµ

dt
= γ(c, ~v).

• Example application: Find ~φ and ~A of a particle of charge q, moving with velocity

v along the x axis. We worked this out, the hard way, directly from Maxwell’s equations.

Now let’s see it as an immediate consequence of relativity. In the rocket frame moving

with the particle, we have Aµ′

= (φ′, ~A′) = (q/r′,~0). Converting to the lab frame,
(

φ
Ax

)
=

(
γ βγ
βγ γ

)(
q/r′

0

)
,

which gives the answer we found earlier, since r′ =
√

x′2 + y′2 + z′2 and x′ = γ(x− vt).

• We discussed last week the relativistic Lagrangian for a mass m particle of charge

q, interacting with ~E and ~B:

L = −mc2
√

1− v2/c2 +
q

c
~v · ~A− qφ.

Now we can understand why it gives a Lorentz invariant action, since this S =
∫
dtL can

be written as a manifestly Lorentz invariant integral over the particle’s world-line, xµ(τ):

S =

∫
(−mc2dτ −

q

c
Aµdx

µ)

We saw last week that the above L gives Lorentz force law as its equations of motion:

d

dt
(γm~v) = q ~E +

q

c
~v × ~B.

• We’re guaranteed that the above force law is relativistic, since it came from a

relativistic action. But the action involves the 4-vector Aµ = (φ, ~A). Let’s now discuss the

Lorentz transformation properties of ~E and ~B. They fit in Fµν = ∂µAν
− ∂νAµ. Write

out the components in terms of ~E and ~B. Likewise for Fµν .

• If xµ′

= Λµ′

ν xν , then a two-index tensor Aµν , e.g. like Fµν , transforms as

Aµ′ν′

= Λµ′

ρ Λν′

σ Aρσ. Example using boost along the x axis, transforming Fµν and read off

transformation of ~E and ~B. Get Ex = E′
x, Bx = B′

x,
(
Ey

Bz

)
=

(
γ βγ
βγ γ

)(
Ey

Bz

)
,

(
Ez

By

)
=

(
γ −βγ

−βγ γ

)(
E′

z

B′
y

)
.
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• If pµ is a 4-vector, we can define a force 4-vector fµ = dpµ

dτ
= γ dpµ

dt
. So the spatial

part of the Lorentz force law can be written as

dpµ

dτ
= fµ = γ

dpµ

dt
= γ(q ~E +

q

c
~v × ~B) =

q

c
Fµνuν .

The time component gives the power: γ dE
dt
.

• Maxwell’s equations can now be written as 4-vector equations: ∂µF
µν = 4π

c
Jν . The

no-magnetic source Maxwell equations can be written as ∂µF̃
µν , where F̃µν = 1

2
ǫµνρσFρσ,

or equivalently ∂µFρσ+∂ρFσµ+∂σFµρ = 0; we solved these already, via Fµν = ∂µAν−∂νAµ.

As we already saw, Maxwell’s equation requires charge conservation, which is now

obvious from summing over the indices, since ∂µ∂ν is symmetric and Fµν is antisymmetric:

0 = ∂µ∂νF
µν = 4π

c
∂νJν .

• Moving point charge: Jµ = cρ dxµ

dx0 , which is a 4-vector because ρ and dx0 transform

the same way. Likewise, ρ = qδ3(~x − ~x0) makes sense, with q Lorentz invariant. E.g.

δ4(xµ
− xµ

0
) is Lorentz invariant, and δ(t− t0)dt is Lorentz invariant

• Using the above, the term −
q
c
Aµdx

µ in the point particle world-line action can be

written as a spacetime volume integral −
∫
d4xAµJ

µ, which is Lorentz invariant. Note

d4x is Lorentz invariant and ǫµνρσ is Lorentz invariant for the same reason, mentioned last

time: det Λ = 1.

Next time: write Maxwell’s equations as coming from least action, with Lagrangian

density ∼ FµνF
µν

∼ ~E2
− ~B2.
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