3/6/13 Lecture outline

• Last time: Lorentz transformation between frames, $x^{\mu'} = \Lambda^{\mu'}{}_{\nu}x^{\nu}$. All 4-vectors transform the same way, with the same $\Lambda^{\mu'}_{\nu}$. Recall boost along the x axis: $\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$, with $\beta = v/c$, $\gamma = 1/\sqrt{1-\beta^2}$. Inverse transformation $= \beta \to -\beta$. • Examples of 4-vectors: $x^{\mu} = (ct, \vec{x}), p^{\mu} = (E/c, \vec{p}), J^{\mu} = (c\rho, \vec{J}), A^{\mu} = (\phi, \vec{A}), u^{\mu} = \frac{dx^{\mu}}{d\tau} = \gamma \frac{dx^{\mu}}{dt} = \gamma(c, \vec{v}).$

• Example application: Find $\vec{\phi}$ and \vec{A} of a particle of charge q, moving with velocity v along the x axis. We worked this out, the hard way, directly from Maxwell's equations. Now let's see it as an immediate consequence of relativity. In the rocket frame moving with the particle, we have $A^{\mu'} = (\phi', \vec{A}') = (q/r', \vec{0})$. Converting to the lab frame,

$$\begin{pmatrix} \phi \\ A_x \end{pmatrix} = \begin{pmatrix} \gamma & \beta\gamma \\ \beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} q/r' \\ 0 \end{pmatrix},$$

which gives the answer we found earlier, since $r' = \sqrt{x'^2 + y'^2 + z'^2}$ and $x' = \gamma(x - vt)$.

• We discussed last week the relativistic Lagrangian for a mass m particle of charge q, interacting with \vec{E} and \vec{B} :

$$L = -mc^{2}\sqrt{1 - v^{2}/c^{2}} + \frac{q}{c}\vec{v}\cdot\vec{A} - q\phi.$$

Now we can understand why it gives a Lorentz invariant action, since this $S = \int dt L$ can be written as a manifestly Lorentz invariant integral over the particle's world-line, $x^{\mu}(\tau)$:

$$S = \int (-mc^2 d\tau - \frac{q}{c} A_\mu dx^\mu)$$

We saw last week that the above L gives Lorentz force law as its equations of motion:

$$\frac{d}{dt}(\gamma m \vec{v}) = q\vec{E} + \frac{q}{c}\vec{v} \times \vec{B}.$$

• We're guaranteed that the above force law is relativistic, since it came from a relativistic action. But the action involves the 4-vector $A^{\mu} = (\phi, \vec{A})$. Let's now discuss the Lorentz transformation properties of \vec{E} and \vec{B} . They fit in $F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$. Write out the components in terms of \vec{E} and \vec{B} . Likewise for $F_{\mu\nu}$.

• If $x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu}$, then a two-index tensor $A^{\mu\nu}$, e.g. like $F^{\mu\nu}$, transforms as $A^{\mu'\nu'} = \Lambda^{\mu'}_{\rho} \Lambda^{\nu'}_{\sigma} A^{\rho\sigma}$. Example using boost along the *x* axis, transforming $F^{\mu\nu}$ and read off transformation of \vec{E} and \vec{B} . Get $E_x = E'_x$, $B_x = B'_x$,

$$\begin{pmatrix} E_y \\ B_z \end{pmatrix} = \begin{pmatrix} \gamma & \beta\gamma \\ \beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} E_y \\ B_z \end{pmatrix}, \qquad \begin{pmatrix} E_z \\ B_y \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} E'_z \\ B'_y \end{pmatrix}.$$

• If p^{μ} is a 4-vector, we can define a force 4-vector $f^{\mu} = \frac{dp^{\mu}}{d\tau} = \gamma \frac{dp^{\mu}}{dt}$. So the spatial part of the Lorentz force law can be written as

$$\frac{dp^{\mu}}{d\tau} = f^{\mu} = \gamma \frac{dp^{\mu}}{dt} = \gamma (q\vec{E} + \frac{q}{c}\vec{v} \times \vec{B}) = \frac{q}{c}F^{\mu\nu}u_{\nu}.$$

The time component gives the power: $\gamma \frac{d\mathcal{E}}{dt}$.

• Maxwell's equations can now be written as 4-vector equations: $\partial_{\mu}F^{\mu\nu} = \frac{4\pi}{c}J_{\nu}$. The no-magnetic source Maxwell equations can be written as $\partial_{\mu}\tilde{F}^{\mu\nu}$, where $\tilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\rho\sigma}F_{\rho\sigma}$, or equivalently $\partial_{\mu}F_{\rho\sigma} + \partial_{\rho}F_{\sigma\mu} + \partial_{\sigma}F_{\mu\rho} = 0$; we solved these already, via $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$.

As we already saw, Maxwell's equation requires charge conservation, which is now obvious from summing over the indices, since $\partial_{\mu}\partial_{\nu}$ is symmetric and $F^{\mu\nu}$ is antisymmetric: $0 = \partial_{\mu}\partial_{\nu}F^{\mu\nu} = \frac{4\pi}{c}\partial^{\nu}J_{\nu}.$

• Moving point charge: $J^{\mu} = c\rho \frac{dx^{\mu}}{dx^{0}}$, which is a 4-vector because ρ and dx^{0} transform the same way. Likewise, $\rho = q\delta^{3}(\vec{x} - \vec{x}_{0})$ makes sense, with q Lorentz invariant. E.g. $\delta^{4}(x^{\mu} - x_{0}^{\mu})$ is Lorentz invariant, and $\delta(t - t_{0})dt$ is Lorentz invariant

• Using the above, the term $-\frac{q}{c}A_{\mu}dx^{\mu}$ in the point particle world-line action can be written as a spacetime volume integral $-\int d^4x A_{\mu}J^{\mu}$, which is Lorentz invariant. Note d^4x is Lorentz invariant and $\epsilon^{\mu\nu\rho\sigma}$ is Lorentz invariant for the same reason, mentioned last time: det $\Lambda = 1$.

Next time: write Maxwell's equations as coming from least action, with Lagrangian density $\sim F_{\mu\nu}F^{\mu\nu} \sim \vec{E}^2 - \vec{B}^2$.