2/27/13 Lecture outline
e Today’s topic: motion of charged particles in (external) E and B fields.
e Lagrangian: L = Lo+ 27 - A-— q¢, where Ly is the free-particle Lagrangian. For the
non-relativistic case, Lo ~ —mv2 In relativity, Ly = —mc? \/m . We’ll understand

it better next week, but can still use it now. So note that
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with pp = 0Lo/0¥ = ymu. The EL equations of motion are
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Since A = A(t,7(t)), ‘% =2 4+ (v V)A. Recalling E = — V¢ — %% and B =V x A,

the above can be rewritten as the Lorentz force law:
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e Relativistic example: charged particle in a static uniform E, with B = 0. Take
E = FEZ. Then

L=—mc*\/1—c2(i% 4 92 + 22) + qEpz.

Note p; = 0L/0v; = ymi;. Since x and y and t don’t enter, we have three conserved
quantities:

pr =ymi,  py=ymy, E=ymc®—qEz.

And p, = qEy. So p, = qEt. Suppose that at time t = 0, p = ppZ and & = 0. Then the

conserved energy is £ = \/c2pZ + (mc?)? and conservation of p, and p, give pg = ymi and

y = ¢ = 0. Use a change of variables, ’y = gt , SO pp = md , which integrates to z = po7/m.

Also p, = ymz = gqEt now gives m = qFt. Taklng - of the £ conservation equation
gives 375 = (¢B/mc*) % = (qE/mc)Qt. Integrating, we get ¢t = tosinh(qE7/mc), and
v =4t = (¢qEty/mc) cosh(¢ET/mc). We can determine ¢, since at 7 =t = 0, v = £/mc?,

so tg = E/qEc. Using 7/m = x/pgy, we get

g . €
t = Be sinh(qEx /poc), z = q—E(COSh(qE«?S/pOC> —-1).

For 7 and x small, we have x ~ vgt, with vy = poc?/€ and z =~ %atz, with a = ¢F/m. For

late times,
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e Motion in a static, uniform B. Consider the nonrelativistic case. ¥ = _%E X U, SO
Q. = —¢B/mec. In the relativistic case, use p = (£7)/c?, with £ a constant since B does
no work. So 7 = —(qe(B)/E) x ¥, so Q, = —qcB/E.

We can write B = B7 in terms of A = Bzxy, so

B
L=—-mc*\/1—v2/c2+ %%Bw.
The constants of the motion are

qBx
Py = YMy + 0 Dy = YMu,, E = ymdc?.

and the equation of motion is %(vmvx) = gqBuy/c. See rotation in z,y plane with Q =
qB/yme.

e Motion when E and B are both constant and perpendicular. Take ¢ = xV/d and
A= yBzx. Suppose an electron is released from at rest at x = 0, find minimum V' such

that it can reach x = d. Use

B
L=—-mc*\/1—0v2/c? — e—oxvy + e%V.
c
The constants are

e x
Dy = YNy, — EBox =0, p, = ymuv, =0, yme? — eEV = mc?

Can use these to find the minimum V.

e Take F = Eyy and B = Byz, and suppose Fy < By and treat it nonrelativistically.
There is a drift velocity, with in general (7) = cE x B/B2. Looks bizarre: drifts in direction
L to the fields. We’'ll see later how it makes sense in terms of boosted frame fields. Show
directly: solving the equations gives
eEo sin Q.t, Vy = — cEo

mil. miic
with the last term the drift velocity.

e Motion in a slowly varying B(t) = B(t)2. Compute A(smo?) =~ —efdz- E =
1y ‘Z—Jf -d@ ~ ¢Brv? /Q2. Now (27/Q.)B = AB, so we get A(mv? /2B) ~ 0. Adiabatic

invariant.

(cos Qct — 1),

'Uy:

e Drift’s in weakly inhomogenecous B (Alfven). Particles have cyclotron spiral rotations
around B field lines, averaging over them leads to drift in direction L to B (see O’Neil’s
notes). E.g. torus solenoid, this drift leads to collection of + charges on top and — charges
on bottom, with B into page. Results in E such that E x B drift pushes plasma out in

the radial direction. Plasma tokamak or mirror bottles. Earth’s Van Allen belts



