
2/27/13 Lecture outline

• Today’s topic: motion of charged particles in (external) ~E and ~B fields.

• Lagrangian: L = L0+
q
c~v ·

~A− qφ, where L0 is the free-particle Lagrangian. For the

non-relativistic case, L0 ≈ 1

2
m~v2. In relativity, L0 = −mc2

√
1− v2/c2. We’ll understand

it better next week, but can still use it now. So note that

~p =
∂L

∂~v
= ~p0 +

q

c
~A, H = ~p · ~v − L = γmc2 + qφ,

with ~p0 = ∂L0/∂~v = γm~v. The EL equations of motion are

d

dt
~p =

d

dt
(~p0 +

q

c
~A) =

∂L

∂~r
=

q

c
∇(~v · ~A)− q∇φ

Since ~A = ~A(t, ~r(t)), d ~A
dt = ∂A

∂t + (~v · ∇) ~A. Recalling ~E = −∇φ− 1

c
∂ ~A
∂t and ~B = ∇ × ~A,

the above can be rewritten as the Lorentz force law:

d~p0
dt

= qE +
q

c
~v × ~B.

• Relativistic example: charged particle in a static uniform ~E, with ~B = 0. Take

~E = Eẑ. Then

L = −mc2
√

1− c−2(ẋ2 + ẏ2 + ż2) + qE0z.

Note pi = ∂L/∂vi = γmẋi. Since x and y and t don’t enter, we have three conserved

quantities:

px = γmẋ, py = γmẏ, E = γmc2 − qEz.

And ṗz = qE0. So pz = qEt. Suppose that at time t = 0, ~p = p0x̂ and ~x = 0. Then the

conserved energy is E =
√

c2p2
0
+ (mc2)2 and conservation of px and py give p0 = γmẋ and

y = ẏ = 0. Use a change of variables, γ ≡ dt
dτ , so p0 = mdx

dτ , which integrates to x = p0τ/m.

Also pz = γmż = qEt now gives m dz
dτ = qEt. Taking d

dτ of the E conservation equation

gives d2t
dτ2 = (qE/mc2) dzdτ = (qE/mc)2t. Integrating, we get t = t0 sinh(qEτ/mc), and

γ = dt
dτ = (qEt0/mc) cosh(qEτ/mc). We can determine t0 since at τ = t = 0, γ = E/mc2,

so t0 = E/qEc. Using τ/m = x/p0, we get

t =
E

qEc
sinh(qEx/p0c), z =

E

qE
(cosh(qEx/p0c)− 1).

For τ and x small, we have x ≈ v0t, with v0 = p0c
2/E and z ≈ 1

2
at2, with a = qE/m. For

late times,

t ≈
E

2qEc
eqEx/p0c, z ≈

E

2qE
eqEx/p0c →

dz

dt
≈ c
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• Motion in a static, uniform ~B. Consider the nonrelativistic case. ~̇v = − q
mc

~B×~v, so

~Ωc = −q ~B/mc. In the relativistic case, use ~̇p = (E~̇v)/c2, with E a constant since ~B does

no work. So ~̇v = −(qc〈B〉/E)× ~v, so ~Ωc = −qc ~B/E .

We can write ~B = Bẑ in terms of ~A = Bxŷ, so

L = −mc2
√

1− v2/c2 +
qB

c
vyBx.

The constants of the motion are

py = γmvy +
qBx

c
, pz = γmvz, E = γmc2.

and the equation of motion is d
dt (γmvx) = qBvy/c. See rotation in x, y plane with Ω =

qB/γmc.

• Motion when ~E and ~B are both constant and perpendicular. Take φ = xV/d and

~A = ŷBx. Suppose an electron is released from at rest at x = 0, find minimum V such

that it can reach x = d. Use

L = −mc2
√

1− v2/c2 −
eB0

c
xvy + e

x

d
V.

The constants are

py = γmvy −
e

c
B0x = 0, pz = γmvz = 0, γmc2 − e

x

d
V = mc2

Can use these to find the minimum V .

• Take ~E = E0ŷ and ~B = B0ẑ, and suppose E0 ≪ B0 and treat it nonrelativistically.

There is a drift velocity, with in general 〈~v〉 = c ~E× ~B/B2. Looks bizarre: drifts in direction

⊥ to the fields. We’ll see later how it makes sense in terms of boosted frame fields. Show

directly: solving the equations gives

vy =
eE0

mΩc
sinΩct, vx = −

eE0

mΩc
(cosΩct− 1),

with the last term the drift velocity.

• Motion in a slowly varying ~B(t) = B(t)ẑ. Compute ∆( 1
2
mv2

⊥
) ≈ −e

∮
d~ℓ · E =

1

c

∫
∂ ~B
dt · d~a ≈ e

c Ḃπv2
⊥
/Ω2

c . Now (2π/Ωc)Ḃ = ∆B, so we get ∆(mv2
⊥
/2B) ≈ 0. Adiabatic

invariant.

•Drift’s in weakly inhomogeneous ~B (Alfven). Particles have cyclotron spiral rotations

around ~B field lines, averaging over them leads to drift in direction ⊥ to ~B (see O’Neil’s

notes). E.g. torus solenoid, this drift leads to collection of + charges on top and − charges

on bottom, with ~B into page. Results in ~E such that ~E × ~B drift pushes plasma out in

the radial direction. Plasma tokamak or mirror bottles. Earth’s Van Allen belts
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