
2/25/13 Lecture outline

• Last time: In Lorentz gauge, Maxwell’s equations are solved via ~E = −∇φ− 1

c
∂ ~A
∂t

,

~B = ∇ × ~A, with

∂2φ(~r, t) = 4πρ(~r, t), ∂2 ~A(~r, t) =
4π

c
~J(~r, t). (1)

We found the Greens function and this led to solutions

φ(~r, t) =

∫
d3~r′

ρ(~r′, t−R/c)

R
, ~A(~r, t) =

1

c

∫
d3~r′

~J(~r′, t−R/c)

R
.

For the case of a uniformly moving charge (~a = 0), we found this led to

φ(~r, t) = γ
q

[(γx− γvt)2 + y2 + z2]1/2
, ~A =

~v

c
φ (2)

Then found ~B = 1

c~v ×
~E and

~E(~r, t) = qγ−2
~r − ~r′(t)

((x− vt)2 + γ−2(y2 + z2))3/2
.

• Now consider q with general motion ~r0(t). So

ρ(~r, t) = qδ(~r − ~r0(t)), ~J(~r, t) = q~̇r0(t)δ(~r − ~r0(t).

φ(~r, t) = q

∫
d3~r′dt′

1

|~r − ~r′|
δ(~r′ − ~r0(t

′))δ(t′ − t+
1

c
|~r − ~r0(t

′)|).

Now δ(t′ − . . .) = δ(t′ − tr)ζ, where

ζ = 1−
1

c

dRa

dt
= (1 +

1

c

dRa

dt
)−1 =

1

1− ~βr · R̂a

where ~Ra(t) = ~r − ~ra(t), and ~ra(t) = ~r0(tr), and ~vr = d
dt
~r0(t)|t=tr and ~βr = ~vr/c. Note

d
dt = ζ d

dtr
so e.g. ~va = ζ~vr, where ~va = − d

dt
~Ra(t). So get the Lienard-Wiechert potentials

φ(~r, t) =
qζ

Ra
=

q

Ra − βr · ~Ra

, ~A(~r, t) =
q~βr

Ra − ~βr · ~Ra

.

Plug these in to get ~E and ~B. Find ~B = R̂a × ~E and (Heaviside-Feynman)

~E = q
R̂a

R2
a

+ q
Ra

c

d

dt

R̂a

R2
a

+ q
1

c2
d2

dt2
R̂a.
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Alternatively, can write it as

~E =
q(1− β2

r )

(Ra − ~βr ·Ra)3
(~Ra − ~βrRa) +

q

c2(Ra − ~βr · ~Ra)3
(~̇vr × (~Ra − ~βrRa))× ~Ra.

• Consider charges moving in some localized region, with the observer far away. For

static charges, the leading contribution to ~E (monopole term) is ∼ 1/R2. For moving

charges, the leading term is 1/R: ~E ≈ − q
Rc2

d2

dt2
~r0,⊥(t−R/c). For a collection of charges,

this gives more generally at leading order in large R:

~E ≈
1

Rc2
r̂ × (r̂ ×

d2

dt2
~dret), ~B ≈ r̂ × ~E.

Let’s derive it quickly again, in a way that you can easily remember for the leading con-

tribution, far from the source

~A(~r, t) ≈
1

c

∫
d3~r′

1

|~r − ~r′|
~J(~r′, t− |~r − ~r′|/c), ~J ≈

∑

i

qi~̇ri(t− r/c)δ3(~r′ − ~ri),

Plug into ~A, and Taylor expand 1/|~r − ~r′| for large r, get

~A ≈
1

rc
~̇d(t− r/c) +

1

2rc2
d2

dt2
Qij r̂j ê

i +
1

rc
( ~̇m× r̂),

where recall ~m = 1

2c

∫
d3~r′~r′ × ~J . Gives

~E ≈
1

rc2

[
r̂ × (r̂ ×

d2

dt2
~dret) + (~d → ~m) + (~d →

1

2c

d ~Q

dt
)

]
.

Let’s keep just the dipole term.

Then ~S = c
4π

E2n̂ falls of as 1/R2, and

dP

dΩ
=

1

4πc3
|(r̂ ×

d2~dret
dt2

|2

Integrating over solid angle, P = 2

3c2
d2 ~dret

dt2

2

• Fourier transform t → ω, the above general expressions become

φω(~r) =

∫
d3x′

eiωR/c

R
ρω(~r

′), ~Aω(~r) =

∫
d3x′

eiωR/c

R
~jω(~r

′)/c.

Then ~Eω = −∇φω + iω ~Aω/c and ~Bω = ∇ × ~Aω.
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• Far zone: |~R− ~r′| ≈ R− ~r′R̂ and tret ≈ t− (R − ~r′R̂)/c Get

φω(~R) ≈
eikR

R
ρ~k,ω,

~Aω(~R) ≈
eikR

R
~j~k,ω/c,

where ~k = ωR̂/c.

Dipole approximation: ~j~k,ω ≈ ( ~̇d)ω = −iω~dω. Then get ~Eω ≈ k2 ~dω,⊥e
ikR/R, which in

t gives what we mentioned above, ~E ≈ − 1

Rc2
d2

dt2
~dret,⊥.

Get higher multipoles by expanding e−i~k·~r in the FT from ~jω(~r) to ~j~kω. Writing

e−i~k·~r ≈ 1 − i~k · ~r + . . ., the 1 term gives the dipole approximation. The next term give

contributions to ~E and ~B involving d3/dt3 of the quadrupole tensor. Etc.

• Antennae. Center fed example, I = I0 cosωt → d
dt
~d = I0a cosωtẑ. Far field:

| ~E| ≈ I0aω
Rc2

sinωtr sin θ. Better: ~j = I0 sin(
1

2
ka − k|z|) cosωtδ(x)δ(y)ẑ. Leads to d

dt
~d ≈

1

4
I0ka

2 cosωtẑ.

Another example: dipole rotating in plane z = 0, so d2 ~d
dt2 = −ω2 ~d. Work out d2 ~d

dt2 × r̂.

Also, angular momentum radiated: dLi

dt
=

∮
Mij r̂jd

2s, with Mij = ǫikmTjkx
m. Get

e.g. for rotating dipole in plane z = 0, d~L
dt ≈ 2

3c3 d
2ω3ẑ, and L̇/Ė = 1/ω, suggestive of

photons.

• Radiation reaction: an accelerating charge radiates power P ≈ 2

3

e2

c3~a
2. This leads

to a backreaction additional force needed to accelerate the charge.
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