2/25/13 Lecture outline

e Last time: In Lorentz gauge, Maxwell’s equations are solved via E=— Vo %%—f ,
B =V x A, with
2 (= - 2 1= am 2
o7 1) = dmp(rt),  OPA(Y) = 7 ) (1)

We found the Greens function and this led to solutions

L [Pt —Rle) o _1/ 5 J (7't — R/c)
gb(r,t)—/dr 7 , A(r,t)—c d>7 7 .
For the case of a uniformly moving charge (@ = 0), we found this led to

. q 7T
¢(T’t)_7[(7x—vvt)2—|—y2+22]1/2’ A_ C(ZS (2)

| - 7 — 7 (t)
E(r,t) = qv ( — 0t)2 + 7—2(y% 1 22))3/2

e Now consider ¢ with general motion 7 (¢). So

p(7yt) = qd (7 —To(t)),  J(7t) = qio(t)d(F — 7o (1)
/ = 6(F—Fo(t’))5(t’—t+ %|F—F0(t’)|).
Now 6(t' —...) = o(t' — t,.)¢, where
1dR, 1dR,, , 1
C=1l-Cw ~ 0+ " 1-3.-R,

where Ro(t) = 7 — 7y(t), and 7,(t) = 7y(t,), and 7, = 47 (t)] =, and B, = ¥./c. Note
R,(t). So get the Lienard-Wiechert potentials

= Cd;:el,n so e.g. U, = (U, where v, = _%
o(F,t) = @ _ 4 AF) = ap,
Ra Ra — Br . Ra R BT

Plug these in to get E and B. Find B = R, x E and (Heaviside-Feynman)

~ . Ea + Ra d ﬁa + 1 d2 fay
TR T gt me T T2 g
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Alternatively, can write it as

_ 1— (32 _ - . _ - _
Fo_91=8) g Gy R .
(Ra - /BT‘ : Ra)3 CQ(RCL - Br : Ra)3

e Consider charges moving in some localized region, with the observer far away. For

static charges, the leading contribution to E (monopole term) is ~ 1/R2. For moving

q_d*
Rc? dt?

this gives more generally at leading order in large R:

charges, the leading term is 1/R: E ~ — 70,1 (t — R/c). For a collection of charges,

—dret>v B)%?XE_:

Let’s derive it quickly again, in a way that you can easily remember for the leading con-

tribution, far from the source

- 1 1 - - .
A7) ~ = /d?’f"’ Tt —|i=7lfe), T afilt - /)8 -7,

c |7 — 7|

Plug into A, and Taylor expand 1 /|7 — 7| for large r, get

An Lt v 4 5 L oure + Lo
“re re 2rc? dt? AR rcm ")
where recall m = % f B x J. Gives
L1 | &2 . S 1dQ
E%@ TX(TX@dTet)‘l‘(d—)m)‘i‘(d—)?c—t)

Let’s keep just the dipole term.
Then S = £ E?n falls of as 1/R?, and

aP 1 Pdyer
aa 47rc3|(r T |
. . 2 d2j’ret2
Integrating over solid angle, P = 255 <7

e Fourier transform ¢ — w, the above general expressions become

L d3 ,ein/c , 14’ B d3 /ein/c_f ,
$u() = [ d°w'—5—pu(T), w() = [ &o—F—ju()/c.

Then E, = — V., + iwA,/c and B, = V x A,,.
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e Far zone: |R — 7| ~

R—7Rand t,e ~t— (R—7R)/c Get

. pikR L ciFR
¢W(R> ~ ?pﬁ,oy AW(R> ~ R jE,w/C’
where k = wR/c.
Dipole approximation: ;E LR (Jjw =

—iwd,,. Then get E,, ~ k?d,, j e™*1/1
1 d* 7
— Rz gz dret, L-

t gives what we mentioned above E ~
Get higher multipoles by expanding e "7 in the FT from ]1,(173 to jr
o1k 7

, which in

Writing
~1—1ik- -7+ ..., the 1 term gives the dipole approximation. The next term give
contributions to E and B involving d3/dt® of the quadrupole tensor. Etc

e Antennae.

Center fed example I = Iycoswt —
|E‘ Ioaw

%cf = IJgacoswtz. Far field:
sinwt, sinf. Better: j = I sin(gka — k|z]) coswtd(z)d(y)z. Leads to d
%Iok:a coswtz.

Another example: dipole rotating in plane z = 0, so

%;7_ —w?d. Work out dt2 X T
Also, angular momentum radiated: dé = fMZ]rjd s, with M;; = €jpmTjrx™. Get
e.g. for rotating dipole in plane z = 0, ‘flf N g3 2 d?w3Z, and L/E
photons.

1/w, suggestive of

e Radiation reaction: an accelerating charge radiates power P =~ %%

This leads
to a backreaction additional force needed to accelerate the charge



