
2/20/13 Lecture outline

• Last time: considered solving ∂2ψ = 0 in vacuum, using Greens functions for getting

the boundary conditions on some surface. Today we’ll solve the equations with source terms

via Greens functions.

• In Lorentz gauge, Maxwell’s equations are solved via ~E = −∇φ− 1

c
∂ ~A
∂t ,

~B = ∇× ~A,

with

∂2φ(~r, t) = 4πρ(~r, t), ∂2 ~A(~r, t) =
4π

c
~J(~r, t). (1)

We’d like to find a Green’s function in space and time:

∂2G(~r, t;~r′, t′) = 4πδ(~r − ~r′)δ(t− t′).

Translation symmetry: G = G(~R, τ), where ~R ≡ ~r − ~r′ and τ = t − t′. Fourier transform

in τ :

G(~R, τ) =

∫
dω

2π
e−iωτ G̃(R, ω)

then solutions are

G̃± =
e±ikR

R
, → G±(~R, τ) =

1

R
δ(τ ∓R/c) ≡ Gret,adv.

The ret case connects a field at some time to the behavior of the source in the past, which

is what we want. The adv case connects to the behavior of the source in the future, which

we typically don’t want1. So we get the Lorentz gauge soln’s, which give the fields in terms

of the charges’ location at the earlier time

φ(~r, t) =

∫
d3~r′

ρ(~r′, t−R/c)

R
, ~A(~r, t) =

1

c

∫
d3~r′

~J(~r′, t−R/c)

R
.

• Example: uniformly moving charge ρ = qδ(~r − vtx̂), ~J = qvx̂δ(~r − vtx̂).

φ(~r, t) = q

∫
d3~r′

1

|~r − ~r′|
δ(~r′ − vtx̂+

v

c
|~r − ~r′|x̂) =

q

(R− v
c (x− x′))ret

.

We used δ(x′ − vt+ v
c
R) = δ(x′ − x′ret)/(1+

v
c
dR
dx′

) and x′ret solves x
′
ret = vt− v

c
Rret, with

Rret =
√

(x− x′ret)
2 + y2 + z2. So x′ret satisfies a quadratic equation, which leads to

x′ret = −γ2
v2

c2
x+ γ2vt−

v

c
γ2

√
(x− vt)2 + γ−2(y2 + z2),

1 Aside: in quantum field theory, the Feynman propagator is a superposition of adv and ret

cases: “anti-matter travels backwards in time”.
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with γ ≡ 1/
√
1− v2/c2. The denominator above is simplified as

Rret−
v

c
(x−x′)ret = −

v

c
(x−vt)+Rretγ

−2 = ct−
v

c
x−

c

v
x′retγ

−2 =
√

(x− vt)2 + γ−2(y2 + z2).

After a lot of work, we derive the simple answer:

φ(~r, t) = γ
q

[(γx− γvt)2 + y2 + z2]1/2
(2)

Alternatively, as in the book, we can get the answer by Fourier transform:

φ(~r, t) =

∫
d3k

(2π)3
φ~ke

i~k·~re−kxvt

since the solution depends only on x − vt, and we plug in the wave equation with source

to get

(k2 −
v2

c2
k2x)φ~k = 4πq

solving for φ~k and doing the Fourier integrals again leads to (2). Likewise, ~J yields

~A(~r, t) =
q~v

c(R − ~v·~R
c
)ret

= γ~v
q

[(γx− γvt)2 + y2 + z2]1/2
(3)

Whenever a lot of work leads to a simple answer, we should look for a simpler expla-

nation. We’ll later understand (2) and (3) as immediately coming from the Lorentz boost

of the potentials from the particle’s rest frame.

• Compute now ~E and ~B. Note ~E = −∇φ+ 1

c2~v(~v · ∇φ) and
~B = 1

c~v ×
~E. Get

~E(~r, t) = qγ−2
~r − ~r′(t)

((x− vt)2 + γ−2(y2 + z2))3/2
.

Note radial but not spherically symmetric. Let ~R = ~r − ~r′(t). When ~R ⊥ ~v, get ~E =

γq ~R/R3. When ~R||~v get ~E = γ−2q ~R/R3. Pancake effect.
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