
2/13/13 Lecture outline

• Continuing from last time, today’s topic is solving the D’Alembertian eq, which we

saw last time governs ~E and ~B without sources. With sources, we’ll see the D’Alembertian

eq again, this time for the potentials φ and ~A, with sources on the RHS from the ρ and

~J . Let’s first say some general things about the case without sources, ∂2ψ(~r, t) = 0. This

is a wave equation, giving propagation of waves at v = c! We saw that last time with

electromagnetic plane waves in vacuum: ω = ck, which says that the wave moves with

vφ = ω/k = c = dω/dk = vg. Any function like ψ = f(x − ct) satisfies ∂2ψ = 0. Today

we’ll consider more general kinds of solutions.

Last time: consider the wave equation ∂2ψ(~r, t), which the components of ~E and ~B

satisfy. Taking ψ = Ref(~r)e−ickt, get (∇2 + k2)f(~r) = 0. An example is the plane wave,

f = e−
~k·~r. Find that eikr/r is a spherical wave solution, with source term at the origin:

(∇2 + k2)
eikr

r
=

1

r2
d

dr
(r2

d

dr

eikr

r
) = −4πδ(~r).

• Other examples of solutions of the wave equation, e.g. spherical waves. Write

complex ~E and ~B, with the understanding to take the real part at the end. Consider wave

with definite wavelength (monochromatic): ~E = ~E0(r)e
ikψ(r)−iωt, ~B = ~B0(r)e

ikψ(r)−iωt;

let’s not bother to keep writing the e−iωt, just remember it’s there. ψ(r) is the eikonal.

We’re going to do an expansion for small wavelength, so r ≫ λ. E.g. ∇· ~B ≈ ikB0· ∇ψe
ikψ,

dropping the ∇ · ~B0 term. Maxwell’s equations then give ~B0 ≈ ∇ψ × ~E0, and ~E0 ≈

∇ψ× ~B0, so (∇ψ)
2 = 1, i.e. ∇ψ = n̂, a unit vector. Get u = 1

16π (|
~E0|

2+| ~B0|
2) = 1

8π
~E0· ~E

∗
0

and ~S = c
8π
~E∗
0 × ~B0 = c

8π (
~E0 · ~E∗

0 )∇ψ. Light ray: ~r(s) with d~r
ds = n̂, and then get

d2~r
ds2

= (n̂ · d
d~r
)n̂ = 1

2
∇(n̂2) = 0, so d~r

ds
is a constant, the rays are straight lines.

• Interference and diffraction. Consider a beam moving in the z direction, through

some screen’s hole in the x, y plane. ~E(~r) = eik0z
∫

d3k
(2π)3

~Eke
i~k·~r. Get ~Ek with a spread

∆kx ≥ 1/∆x and ∆ky ≥ 1/∆y, leading to angular spread of the wave ∆θ ∼ ∆k/k0 ∼

λ/2πa, where a is the diameter of the hole.

• Let ψ(~r) be the components of ~E or ~B, get roughly ψ(~r) ∼
∫
A
d2a′ψinc(~r

′) e
ik|~r−~r

′|

|~r−~r′| ,

treating each point on the aperture A as a point source. Show it more carefully:

In vacuum, components of ~E and ~B and ~A satisfy the wave equation, (∇2− 1
c2

∂2

∂t2 )ψ =

0. Write ψ = Reψ(~r)e−ickt, then (∇2 + k2)ψ(r) = 0. Solve with Green’s function

G(~r′, ~r) = −
eik|~r

′−~r|

4π|~r′ − ~r|
+ F (~r′)
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with F a solution of the laplace equation, included to get the desired BCs. So (∇2+k2)G =

δ(~r − ~r′) and then get

ψ(~r) =

∫

V

∇ · (ψ∇G−G∇ψ)dV = −

∫

∂V

(ψ(~r′)∇′G−G∇′ψ(~r′))d~a′.

Take ∂V = A, an aperture. Choices of G: Kirchoff: GK = −eik|~r−~r
′|/4π|~r− ~r′|, Dirichlet:

GD|r′∈A = 0 (useful if ψ given on A); Neumann n̂ · ∇′GN |A = 0, useful if ∇ψ given.

Finding GN or GD is difficult in general, but it is easy for the case of an infinite plane:

GD,N = GK(~r, ~r′) ∓ GK(~r, ~r′′), where ~r′′ is the mirror of ~r′ through the aperture, so the

plane is ~r′ = ~r′′ and n̂′ · ~r′ = −n̂′ · ~r′′.

For light going through an aperture A, and then propagating to an observer. The

incident wave at A is ψinc(~r
′), get (using GD, approximating it as that above)

ψ(~r) =
−ik

2π

∫

A

ψinc(~r
′)
eik|~r

′−~r|

|~r′ − ~r|
cos θda′,

where d~a′ = ẑda′ and ẑ · ∇′|~r′ − ~r| = −z/|~r′ − ~r| = − cos θ. Actually, it’s complicated to

really work in terms of ~E and ~B, so treat scalar problem, gives good picture of the physics.

For r ≫ r′, approximate |~r − ~r′| ≈ r − ~r · ~r′/r + 1
2r2 (~r × ~r′)2 + . . .. The first order term

is an overall phase, unimportant. The Fraunhofer regime is when r/a is large enough to

keep just the next term. The Fresnel regime is when the third term must also be kept,

because ka2/r is not small.

Example (book): Fresnel diffraction from straight edge, with screen y < 0, with

ψinc = ψ0 constant for y ≥ 0. Observer at ~r = (0, h,D), get there

ψ ≈
−ik

2π
e

ikD

D ψ0

∫ ∞

0

dy′
∫ ∞

−∞

dx′eik(x
′2+(y′−h)2)/2D
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