2/13/13 Lecture outline

• Continuing from last time, today's topic is solving the D'Alembertian eq, which we saw last time governs \vec{E} and \vec{B} without sources. With sources, we'll see the D'Alembertian eq again, this time for the potentials ϕ and \vec{A} , with sources on the RHS from the ρ and \vec{J} . Let's first say some general things about the case without sources, $\partial^2 \psi(\vec{r}, t) = 0$. This is a wave equation, giving propagation of waves at v = c! We saw that last time with electromagnetic plane waves in vacuum: $\omega = ck$, which says that the wave moves with $v_{\phi} = \omega/k = c = d\omega/dk = v_g$. Any function like $\psi = f(x - ct)$ satisfies $\partial^2 \psi = 0$. Today we'll consider more general kinds of solutions.

Last time: consider the wave equation $\partial^2 \psi(\vec{r}, t)$, which the components of \vec{E} and \vec{B} satisfy. Taking $\psi = \operatorname{Ref}(\vec{r})e^{-ickt}$, get $(\nabla^2 + k^2)f(\vec{r}) = 0$. An example is the plane wave, $f = e^{-\vec{k}\cdot\vec{r}}$. Find that e^{ikr}/r is a spherical wave solution, with source term at the origin:

$$(\nabla^2 + k^2) \frac{e^{ikr}}{r} = \frac{1}{r^2} \frac{d}{dr} (r^2 \frac{d}{dr} \frac{e^{ikr}}{r}) = -4\pi\delta(\vec{r}).$$

• Other examples of solutions of the wave equation, e.g. spherical waves. Write complex \vec{E} and \vec{B} , with the understanding to take the real part at the end. Consider wave with definite wavelength (monochromatic): $\vec{E} = \vec{E}_0(r)e^{ik\psi(r)-i\omega t}$, $\vec{B} = \vec{B}_0(r)e^{ik\psi(r)-i\omega t}$; let's not bother to keep writing the $e^{-i\omega t}$, just remember it's there. $\psi(r)$ is the eikonal. We're going to do an expansion for small wavelength, so $r \gg \lambda$. E.g. $\nabla \cdot \vec{B} \approx ikB_0 \cdot \nabla \psi e^{ik\psi}$, dropping the $\nabla \cdot \vec{B}_0$ term. Maxwell's equations then give $\vec{B}_0 \approx \nabla \psi \times \vec{E}_0$, and $\vec{E}_0 \approx \nabla \psi \times \vec{B}_0$, so $(\nabla \psi)^2 = 1$, i.e. $\nabla \psi = \hat{n}$, a unit vector. Get $\overline{u} = \frac{1}{16\pi}(|\vec{E}_0|^2 + |\vec{B}_0|^2) = \frac{1}{8\pi}\vec{E}_0 \cdot \vec{E}_0^*$ and $\vec{S} = \frac{c}{8\pi}\vec{E}_0^* \times \vec{B}_0 = \frac{c}{8\pi}(\vec{E}_0 \cdot \vec{E}_0^*) \nabla \psi$. Light ray: $\vec{r}(s)$ with $\frac{d\vec{r}}{ds} = \hat{n}$, and then get $\frac{d^2\vec{r}}{ds^2} = (\hat{n} \cdot \frac{d}{d\vec{r}})\hat{n} = \frac{1}{2}\nabla(\hat{n}^2) = 0$, so $\frac{d\vec{r}}{ds}$ is a constant, the rays are straight lines.

• Interference and diffraction. Consider a beam moving in the z direction, through some screen's hole in the x, y plane. $\vec{E}(\vec{r}) = e^{ik_0 z} \int \frac{d^3k}{(2\pi)^3} \vec{E}_k e^{i\vec{k}\cdot\vec{r}}$. Get \vec{E}_k with a spread $\Delta k_x \geq 1/\Delta x$ and $\Delta k_y \geq 1/\Delta y$, leading to angular spread of the wave $\Delta \theta \sim \Delta k/k_0 \sim \lambda/2\pi a$, where a is the diameter of the hole.

• Let $\psi(\vec{r})$ be the components of \vec{E} or \vec{B} , get roughly $\psi(\vec{r}) \sim \int_{\mathcal{A}} d^2 a' \psi_{inc}(\vec{r}') \frac{e^{ik|\vec{r}-\vec{r}'|}}{|\vec{r}-\vec{r}'|}$, treating each point on the aperture \mathcal{A} as a point source. Show it more carefully:

In vacuum, components of \vec{E} and \vec{B} and \vec{A} satisfy the wave equation, $(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})\psi = 0$. Write $\psi = Re\psi(\vec{r})e^{-ickt}$, then $(\nabla^2 + k^2)\psi(r) = 0$. Solve with Green's function

$$G(\vec{r}',\vec{r}) = -\frac{e^{ik|\vec{r}'-\vec{r}|}}{4\pi|\vec{r}'-\vec{r}|} + F(\vec{r}')$$

with F a solution of the laplace equation, included to get the desired BCs. So $(\nabla^2 + k^2)G = \delta(\vec{r} - \vec{r'})$ and then get

$$\psi(\vec{r}) = \int_{V} \nabla \cdot (\psi \nabla G - G \nabla \psi) dV = -\int_{\partial V} (\psi(\vec{r}') \nabla' G - G \nabla' \psi(\vec{r}')) d\vec{a}'.$$

Take $\partial V = \mathcal{A}$, an aperture. Choices of G: Kirchoff: $G_K = -e^{ik|\vec{r}-\vec{r'}|}/4\pi|\vec{r}-\vec{r'}|$, Dirichlet: $G_D|_{r'\in\mathcal{A}} = 0$ (useful if ψ given on \mathcal{A}); Neumann $\hat{n} \cdot \nabla' G_N|_{\mathcal{A}} = 0$, useful if $\nabla \psi$ given. Finding G_N or G_D is difficult in general, but it is easy for the case of an infinite plane: $G_{D,N} = G_K(\vec{r},\vec{r'}) \mp G_K(\vec{r},\vec{r''})$, where $\vec{r''}$ is the mirror of $\vec{r''}$ through the aperture, so the plane is $\vec{r'} = \vec{r''}$ and $\hat{n'} \cdot \vec{r'} = -\hat{n'} \cdot \vec{r''}$.

For light going through an aperture \mathcal{A} , and then propagating to an observer. The incident wave at \mathcal{A} is $\psi_{inc}(\vec{r})$, get (using G_D , approximating it as that above)

$$\psi(\vec{r}) = \frac{-ik}{2\pi} \int_{\mathcal{A}} \psi_{inc}(\vec{r}') \frac{e^{ik|\vec{r}'-\vec{r}|}}{|\vec{r}'-\vec{r}|} \cos\theta da',$$

where $d\vec{a}' = \hat{z}da'$ and $\hat{z} \cdot \nabla' |\vec{r}' - \vec{r}| = -z/|\vec{r}' - \vec{r}| = -\cos\theta$. Actually, it's complicated to really work in terms of \vec{E} and \vec{B} , so treat scalar problem, gives good picture of the physics. For $r \gg r'$, approximate $|\vec{r} - \vec{r}'| \approx r - \vec{r} \cdot \vec{r}'/r + \frac{1}{2r^2}(\vec{r} \times \vec{r}')^2 + \ldots$ The first order term is an overall phase, unimportant. The Fraunhofer regime is when r/a is large enough to keep just the next term. The Fresnel regime is when the third term must also be kept, because ka^2/r is not small.

Example (book): Fresnel diffraction from straight edge, with screen y < 0, with $\psi_{inc} = \psi_0$ constant for $y \ge 0$. Observer at $\vec{r} = (0, h, D)$, get there

$$\psi \approx \frac{-ik}{2\pi} e^{\frac{ikD}{D}} \psi_0 \int_0^\infty dy' \int_{-\infty}^\infty dx' e^{ik(x'^2 + (y'-h)^2)/2D}$$