2/13/13 Lecture outline

e Continuing from last time, today’s topic is solving the D’Alembertian eq, which we
saw last time governs E and B without sources. With sources, we’'ll see the D’Alembertian
eq again, this time for the potentials ¢ and E, with sources on the RHS from the p and
J. Let’s first say some general things about the case without sources, 8% (#,t) = 0. This
is a wave equation, giving propagation of waves at v = ¢! We saw that last time with
electromagnetic plane waves in vacuum: w = ck, which says that the wave moves with
vy = w/k = ¢ = dw/dk = v,. Any function like ) = f(x — ct) satisfies 9?1) = 0. Today
we’ll consider more general kinds of solutions.

Last time: consider the wave equation 9%t (7, t), which the components of E and B
satisfy. Taking 1 = Ref(#)e™ " get (V2 + k?)f(#) = 0. An example is the plane wave,
f= e~F7. Find that ei*" /7 is a spherical wave solution, with source term at the origin:

eikr 1 d d eikr
(VZ+k?) " :r—ga(ﬂ% ) = —4mo (7).

e Other examples of solutions of the wave equation, e.g. spherical waves. Write
complex E and B , with the understanding to take the real part at the end. Consider wave
with definite wavelength (monochromatic): E = Ey(r)et*¥ () =iwt B — By (r)eihv(r)—iwt,
let’s not bother to keep writing the e~**, just remember it’s there. 1 (r) is the eikonal.
We're going to do an expansion for small wavelength, sor > \. E.g. V B =~ ikBy- Vapek?,
dropping the V - By term. Maxwell’s equations then give By ~ Vi) x EO, and Ey ~
Vi x By, s0 (V)2 =1,ie. Vi =7, aunit vector. Get w = ﬁ(|ﬁo|2+\§0\2) = %EO-ES‘
and § = 8%55 x By = 8%(50 - EX) V4. Light ray: #(s) with 47 — 7, and then get

CF (- L)n=1V([72%) =0, s0 & is a constant, the rays are straight lines.

ds? dr d
e Interference and diffraction. Consider a beam moving in the z direction, through
some screen’s hole in the x, y plane. E(f') = ¢thoz f (fT];g,EkeiE’F. Get Ek with a spread

Ak, > 1/Az and Ak, > 1/Ay, leading to angular spread of the wave A0 ~ Ak/ky ~

A/2ma, where a is the diameter of the hole.
ik|F—7 |

e Let 1(7) be the components of E or B, get roughly 9(7) ~ J4 d2a’¢mc(7_*")e|F_TF,| ,

treating each point on the aperture A as a point source. Show it more carefully:

In vacuum, components of E and B and A satisfy the wave equation, ( V2 — C% g—;)w =

0. Write ¢ = Rey)(7)e~** then (V2 + k?)y(r) = 0. Solve with Green’s function
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with F a solution of the laplace equation, included to get the desired BCs. So ( V2+k?)G =
§(7— ) and then get

W() = / ($VE — GV Av<w<ﬁ>V’G—GV’w<ﬁ>>da’

Take OV = A, an aperture. Choices of G: Kirchoff: G = —e™*I™=7'| /4x|F7 — 7|, Dirichlet:
Gplrea = 0 (useful if ¥ given on A); Neumann n - V'Gy|4 = 0, useful if Vi given.
Finding Gn or Gp is difficult in general, but it is easy for the case of an infinite plane:
Gp,N = Gg(T,7") F G (7, 7"), where 7 is the mirror of " through the aperture, so the

~! .

=7 andn -7 =-n"-7".

plane is 7
For light going through an aperture A, and then propagating to an observer. The

incident wave at A is ¥;,.(7), get (using Gp, approximating it as that above)

= _Zk/ Vine (7 L__qlcos Oda’,
where dd’ = zda' and z- V'|i" — 7] = —z/|F" — 7] = —cosf. Actually, it’s complicated to
really work in terms of E and B , so treat scalar problem, gives good picture of the physics.
For r > r/, approximate |7 — 7’| &~ r — 7+ 7 /r + 55 (F x )% 4+ .... The first order term
is an overall phase, unimportant. The Fraunhofer regime is when r/a is large enough to
keep just the next term. The Fresnel regime is when the third term must also be kept,
because ka?/r is not small.
Example (book): Fresnel diffraction from straight edge, with screen y < 0, with
Yine = o constant for y > 0. Observer at 7= (0, h, D), get there
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