2/1/12 Lecture outline

- \star Today's lecture directly follows O'Neil lecture 4 notes. See there for details.
- Last time

$$
S = \int_{a}^{b} (-mc^2 d\tau - \frac{q}{c} A_{\mu} dx^{\mu})
$$

with $A^{\mu} = (\phi, \vec{A})$ and $dx^{\mu} = dt(c, \vec{v})$, led to the Euler-Lagrange equations of motion that give the relativistic Lorentz force law,

$$
\frac{d}{dt}(m\vec{v}/\sqrt{1-v^2/c^2}) = q\vec{E} + \frac{q}{c}\vec{v} \times \vec{B},
$$

with

$$
\vec{E} = -\nabla\phi - \frac{1}{c}\frac{\partial\vec{A}}{\partial t}, \quad \text{and} \quad \vec{B} = \nabla \times \vec{A}.
$$

As we saw last time, \vec{E} and \vec{B} , and the EOM, are invariant under the gauge transformation $A_{\mu} \rightarrow A_{\mu} + \partial_{\mu} f.$

• Aside: P and T symmetries, $P : (ct, \vec{x}) \rightarrow (ct, -\vec{x})$ and $T : (ct, \vec{x}) \rightarrow (-ct, \vec{x})$, act on the vector potential A^{μ} as $P : (\phi, \vec{A}) \rightarrow (\phi, -\vec{A})$ and $T : (\phi, \vec{A}) \rightarrow (\phi, -\vec{A})$. They thus map: $P: \vec{E} \to -\vec{E}, \ \vec{B} \to \vec{B}$, and $T: \vec{E} \to \vec{E}, \ \vec{B} \to -\vec{B}$. These fit with \vec{E} being sourced by stationary charges and \vec{B} being sourced by moving charges. The RHS of the Lorentz force law transforms properly under P and T , to match that of the LHS.

• Example: $A^{\mu} = (\phi(\vec{x}), \vec{0})$ electrostatic. Shifting ϕ by a constant is an example of a gauge transformation.

• Example: uniform magnetic field, $\vec{B}_0 = B_0 \hat{z}$, $\phi = 0$. Examples of three gaugeequivalent choices of \vec{A} that all give $\nabla \times \vec{A} = \vec{B}_0$.

• Consider uniform \vec{B}_0 , with $\vec{A} = \hat{y}B_0x$, then

$$
L = -mc^2\sqrt{1 - v^2/c^2} + \frac{q}{c}v_yB_0x.
$$

Compute conserved quantities, $E = \gamma mc^2$ and $p_y = \gamma mv_y + \frac{q}{c}B_0x$ and $p_z = \gamma mv_z$. Helical motion with rotation in plane $\perp \vec{B}_0$: $\frac{d\vec{v}_{\perp}}{dt} = \Omega_c \vec{v}_{\perp} \times \hat{z}, \Omega_c = qB/\gamma mc$.

• Consider $\phi = xV/d$ and $\vec{A} = x_0B\hat{y}$, so $\vec{E} = -\hat{x}V/d$ and $\vec{B} = B_0\hat{z}$ are constant, with $\vec{E}\cdot\vec{B}=0$. The charge is released from rest at $x=0$. Find minimal value of V so that charge can reach $x = d$.

$$
L = -mc^{2}\sqrt{1 - v^{2}/c^{2}} - \frac{q}{c}B_{0}xv_{y} + \frac{qx}{d}V.
$$

With this choice of \vec{A} , L has y translation symmetry so $p_y = \gamma m v_y - \frac{q}{c} B_0 x$ is conserved, as is $p_z = \gamma m v_z$. Initial conditions give $p_y = p_z = 0$. The conserved energy is $E =$ $\gamma mc^2 - qzV/d = mc^2$. Use p_y and E equations at $x = d$ to solve for V.

• Writing L requires that we introduce A^{μ} , with

$$
\vec{E} = -\nabla\phi - \frac{1}{c}\frac{\partial\vec{A}}{\partial t}, \quad \text{and} \quad \vec{B} = \nabla \times \vec{A}
$$

which automatically implies that \vec{E} and \vec{B} satisfy two of Maxwell's equations

$$
\nabla \cdot \vec{B} = 0, \qquad \nabla \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}
$$

related to the non-existence of magnetic charges. If there are magnetic monopoles, it would be much harder to write down an action.

• Solenoid with cylindrical \hat{z} axis symmetry and $\vec{B} = B_0\hat{z}$. Take $\vec{A} = \frac{1}{2}$ $\frac{1}{2}rB_0\theta$ (note $\int_S \vec{B} \cdot d\vec{a} = \oint A \cdot d\vec{l}$ is satisfied as a check on \vec{A} .) Write Rotation symmetry: $\partial L / \partial \theta$ implies that

$$
p_{\theta} = \frac{\partial L}{\partial \dot{\theta}} = \frac{mr^2\dot{\theta}}{\sqrt{1 - v^2/c^2}} + \frac{q}{2c}B_0r^2.
$$

This conservation law follows also from $\frac{d\vec{L}_{z,mech}}{dt} = \tau_z$.

• Let current slowly increase, replace $B_0 \to B_0(t)$. Above p_θ is still conserved (though E isn't, since $\partial L/\partial t \neq 0$). Connection with Faraday's law.

• Example with charges on disk and solenoid:

$$
L = \frac{1}{2}I\dot{\theta}^2 + \frac{Q}{c}A_{\theta}(R)R\dot{\theta}.
$$

 $\partial L/\partial \theta = 0$ gives $P_{\theta} = I\dot{\theta} + \frac{Q}{c}$ $\frac{Q}{c}(\Phi/2\pi)$. Suppose initially $\dot{\theta} = 0$ and $\Phi \neq 0$. Later $\Phi \to 0$ and then $\dot{\theta} \neq 0$. Q: how does this fit with conservation of angular momentum? A: as we'll discuss a bit later, there was angular momentum in the electric-magnetic field, which transferred over to mechanical angular momentum for the solenoid. Total $\vec{L}_{mech} + \vec{L}_{field}$ is conserved.