
2/1/12 Lecture outline

⋆ Today’s lecture directly follows O’Neil lecture 4 notes. See there for details.

• Last time

S =

∫ b

a

(−mc2dτ −
q

c
Aµdx

µ)

with Aµ = (φ, ~A) and dxµ = dt(c, ~v), led to the Euler-Lagrange equations of motion that

give the relativistic Lorentz force law,

d

dt
(m~v/

√
1− v2/c2) = q ~E +

q

c
~v × ~B,

with

~E = −∇φ−
1

c

∂ ~A

∂t
, and ~B = ∇ × ~A.

As we saw last time, ~E and ~B, and the EOM, are invariant under the gauge transformation

Aµ → Aµ + ∂µf .

• Aside: P and T symmetries, P : (ct, ~x) → (ct,−~x) and T : (ct, ~x) → (−ct, ~x), act

on the vector potential Aµ as P : (φ, ~A) → (φ,− ~A) and T : (φ, ~A) → (φ,− ~A). They thus

map: P : ~E → −~E, ~B → ~B, and T : ~E → ~E, ~B → − ~B. These fit with ~E being sourced

by stationary charges and ~B being sourced by moving charges. The RHS of the Lorentz

force law transforms properly under P and T , to match that of the LHS.

• Example: Aµ = (φ(~x),~0) electrostatic. Shifting φ by a constant is an example of a

gauge transformation.

• Example: uniform magnetic field, ~B0 = B0ẑ, φ = 0. Examples of three gauge-

equivalent choices of ~A that all give ∇ × ~A = ~B0.

• Consider uniform ~B0, with ~A = ŷB0x, then

L = −mc2
√
1− v2/c2 +

q

c
vyB0x.

Compute conserved quantities, E = γmc2 and py = γmvy +
q
c
B0x and pz = γmvz. Helical

motion with rotation in plane ⊥ ~B0:
d~v⊥

dt
= Ωc~v⊥ × ẑ, Ωc = qB/γmc.

• Consider φ = xV/d and ~A = x0Bŷ, so ~E = −x̂V/d and ~B = B0ẑ are constant, with

~E · ~B = 0. The charge is released from rest at x = 0. Find minimal value of V so that

charge can reach x = d.

L = −mc2
√

1− v2/c2 −
q

c
B0xvy +

qx

d
V.
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With this choice of ~A, L has y translation symmetry so py = γmvy − q
c
B0x is conserved,

as is pz = γmvz. Initial conditions give py = pz = 0. The conserved energy is E =

γmc2 − qzV/d = mc2. Use py and E equations at x = d to solve for V .

• Writing L requires that we introduce Aµ, with

~E = −∇φ−
1

c

∂ ~A

∂t
, and ~B = ∇ × ~A

which automatically implies that ~E and ~B satisfy two of Maxwell’s equations

∇ · ~B = 0, ∇ × ~E = −
1

c

∂ ~B

∂t

related to the non-existence of magnetic charges. If there are magnetic monopoles, it would

be much harder to write down an action.

• Solenoid with cylindrical ẑ axis symmetry and ~B = B0ẑ. Take ~A = 1

2
rB0θ̂ (note

∫
S
~B · d~a =

∮
A · d~l is satisfied as a check on ~A.) Write Rotation symmetry: ∂L/∂θ implies

that

pθ =
∂L

∂θ̇
=

mr2θ̇√
1− v2/c2

+
q

2c
B0r

2.

This conservation law follows also from
d~Lz,mech

dt
= τz.

• Let current slowly increase, replace B0 → B0(t). Above pθ is still conserved (though

E isn’t, since ∂L/∂t 6= 0). Connection with Faraday’s law.

• Example with charges on disk and solenoid:

L = 1

2
Iθ̇2 +

Q

c
Aθ(R)Rθ̇.

∂L/∂θ = 0 gives Pθ = Iθ̇ + Q
c
(Φ/2π). Suppose initially θ̇ = 0 and Φ 6= 0. Later Φ → 0

and then θ̇ 6= 0. Q: how does this fit with conservation of angular momentum? A: as

we’ll discuss a bit later, there was angular momentum in the electric-magnetic field, which

transferred over to mechanical angular momentum for the solenoid. Total ~Lmech + ~Lfield

is conserved.

2


