
1/25/12 Lecture outline

⋆ See lecture notes for details. Continue where we left off last time.

• Last time: 4-momentum pµ = (E/c, ~p). For massive particle, pµ = muµ, so pµpµ =

(mc)2. For a massless object (e.g. photon), we still have pµ = (E, ~p) as a 4-vector. Here’s

a way to see that (E, ~p) always transforms as a 4-vector. For any theory, the action S must

be Lorentz invariant; this ensures that the EOM behave properly under reference frame

changes. Now use the fact that energy and momentum can be related to the derivative

of the action w.r.t. changes of the endpoint time and position: L(xb) − ẋb(∂L/∂ẋb) =

∂Scl/∂tb, and ∂L/∂ẋb = ∂Scl/∂xb, so we have pµ = ∂Scl/∂x
µ, and the RHS is clearly a

4-vector.

• Relativistic kinematics, continued from last time. Last time we wrote the energy

+ momentum conservation for M → m1 + m2 decay, with the end result that the mass

m1 particle has E1 = (M2 + m2

1
− m2

2
)c2/2M (and likewise for m2, with 1 ↔ 2). Now

demonstrate a quicker way to get the answer, from squaring p− p1 = p2.

Next example: pair creation (Jackson 11.22), scatter energetic photon against CMB

photon to make an electron-positron pair. What is the minimal energy of the photon?

In the CM frame the produced pair is at rest for the minimal energy. So in the frame

of the CMB, the two produced particles have the same energy E and momentum p, with

E1 +E2 = 2E and p1 − p2 = 2p = (E1 −E2)/c. So p2T = (E1+E2)
2/c2 − (E1 −E2)

2/c2 =

4E1E2/c
2 = (p′T )

2 = 4m2c2. End result: E1E2 = m2c4, where E2 = kBT for T = 3K.

Next example (Jackson 11.23): m1 has p1 = (Elab, ~plab) and m2 is at rest in the lab

frame. They collide and out comes two new particles, of mass m3 and m4. (a) Show that

the total energyW in the CM frame is given byW 2 = m2

1
+m2

2
+2m2Elab [sol’n: evaluate p

2

T

in lab and CM frame], and ~p′ = m2~plab/W [sol’n: consider p1 ·pT in lab and CM frame] (b)

show that the CM frame is related to the lab frame by ~βCM = ~plab/(m2+Elab) and γCM =

(m2 +Elab)/W . (c) Show in the non-rel limit that W ≈ m1 +m2+m2p
2

lab/2m1(m1 +m2)

and ~p′ ≈ m2~plab/(m1 +m2) and ~βcm ≈ ~plab/(m1 +m2).

• ~RCM =
∑

i ~riEi/ET , where ET =
∑

iEi =constant. Then ~̇RCM =
∑

i ~̇riEi/ET =

c2
∑

i ~pi/ET = c2~pT /ET , a constant.

• 4-acceleration aµ = d2xµ/dτ2, satisfies aµuµ = 0. Example: consider an observer

who is uniformly accelerating, with acceleration gẑ. (According Einstein’s equivalence

principle, this is equivalent to being in a uniform gravitational field.) So aµa
µ = −g2.

get d
dt
γv = g, so vz = gt/

√
1 + g2t2/c2 and hence z = c2

g
(
√

1 + gt
c2

− 1). The proper

time of the accelerated observer is
∫ t

0

√
1− v2/c2dt = c

g
sinh−1(gt/c). At late times, τ →

1



(c/g) ln(2gt/c) ≪ t.We can relate coordinates (τ = t̄, z̄) in the rocket frame to those in the

lab via (setting c=1):

t = (g−1 + z̄) sinh(gτ) z = (g−1 + x̄) cosh gτ − g−1.

(Note now ds2 = dt2 − dz2 = (1 + gz̄)2dt̄2 which, by the equivalence principle, is related

to how gravity modifies the spacetime metric from ds2 = ηµνdx
µdxν to ds2 = gµνdx

µdxν .

• Force fµ = dpµ

dτ
= (γc−1 dE

dt
, γ d~p

dt
) = (γc−1 ~f · ~v, γ ~f).

• kµ = (ω,~k), so eik·x is invariant. On this, kµ = i∂µ. Fits with QM, where pµ = h̄kµ.

Show this gives the correct Doppler effect relations between kµ
′

and kµ.

• Next time: Charged particles interact with electromagnetic fields:

S =

∫ b

a

(−mc2dτ −
e

c
Aµdx

µ).
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