
2/2/11 Lecture 9 outline

• As we discussed last time, the superficial degree of divergence of 1PI diagrams.

Consider the general form of Γ(n):

Γ(n) ∼

∫ L
∏

i=1

d4ki

(2π)4

I
∏

j=1

1

l2j −m2 + iǫ

For large k the integrand behaves as ∼ k4L−2I . Degree of UV divergence (superficially) is

D = 4L− 2I = 2I − 4V + 4 (recall that L = I − V + 1). Suppose interaction is φp, then

pV = 2I + n. E.g. for λφ4, p = 4, get D = 4 − n.

So for λφ4, p = 4, get D = 4 − n. This fits with what we found for n = 2, there was

a quadratic divergence,

Π′(p2) =
λm2

32π2

∫ Λ2/m2

0

udu

u+ 1
=
λm2

32π2

(

Λ2

m2
− log(1 +

Λ2

m2
)

)

.

i.e. D = 2. For n = 4, we get D = 0, which means a log divergence. For n > 4, we get

D < 0, which means that there is no divergence at all (superficially, at least)! So the only

two divergent cases are n = 2 and n = 4. The point will be that we can absorb these two

divergent cases into corrections to the two parameters m and λ. That is the statement

that the theory for p = 4 is renormalizable.

For p = 6, write 4V4 + 6V6 = 2I + n, get D = 4 − n + 2V6. The V4 vertex is

renormalizable, the V6 is not. For λφ4, the UV divergent terms are n = 2, 4. Higher n

diagrams only have sub-divergences, which will be accounted for by properly treating the

n = 2 and n = 4 cases. Example of a n = 6 diagram with a sub-divergence from the n = 2

diagram. Contrast λ4φ
4 with a λ3φ

3 theory (super-renormalizable) and a λ6φ
6 theory

(non-renormalizable).

More generally, with bosons and fermions, D =
∑

i nidi +2(IB)+3(IF )−4
∑

i ni +4,

where ni is the number of vertices of i-th type and di is the number of derivatives in that

interaction, and IB and IF are the numbers of internal boson and fermion lines. Then

D = −B− 3
2F +4+

∑

i(dimLi − 4), where B and F are the numbers of external bose and

fermion lines.

• Dimensional analysis and understanding the degrees of divergence by power-

counting. In h̄ = c = 1 units, dimensionful quantities can be written as x ∼ m[x], which

defines [x], the mass dimension of x. In particular, in D space-time dimensions, we have

[S] = 0 and [dDx] = −D, so [L] = D so scalars have [φ] = (D − 2)/2 and fermions have
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[ψ] = (D − 1)/2. We see that a λpφ
p theory has [λp] = D − p(D − 2)/2. In particular,

for D = 4, get [λp] = 4 − p, showing why p = 4 is special, as compared with say λ3 ∼ M

and λ6 ∼ M−2. Since Γ(n) has units of action, i.e. h̄, it has [Γ(n)] = 0. So a contribution

with e.g. V6 vertices has, on dimensional grounds, a factor of (λ6E
2)V6 , where E is some

energy scale. This reproduces the degree of UV divergence if we take E ∼ Λ → ∞. Dis-

cuss similar power counting for gravity, and for Fermi’s 4-fermion weak-interaction vertex.

Interpretation as low-energy effective theory with cutoff. ”Non-renormalizable” theories

are fine, and actually nice, in the IR, and just need some fixing up in the UV, but some

UV completion.

General integrals

In(a) =

∫

d4k

(2π)4
1

(k2 + a)n

with n integer and Im(a) > 0 and k in Minkowski space. See

In =
(−1)n−1

(n− 1)!

dn−1

dan−1
I1(a), I1 =

−i

16π2

∫ Λ2

0

du
u− a+ a

u− a

where we used the solid angle ΩD−1 = 2πD/2/Γ(D/2), which is 2π2 for D = 4. Get

In(a) = i
(

16π2(n− 1)(n− 2)an−2
)−1

for n ≥ 3.

Special cases

I1 =
i

16π2
a ln(−a) + . . . ,

I2 =
−i

16π2
ln(−a) + . . . ,

where . . . are terms involving the regulator.
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