2/2/11 Lecture 9 outline
e As we discussed last time, the superficial degree of divergence of 1PI diagrams.

Consider the general form of T'("):

L I
d*k; 1
(M ~ L
/};[1 (2%)4j1;[1132—m2+ie

For large k the integrand behaves as ~ k*=2. Degree of UV divergence (superficially) is
D =4L — 21 =21 — 4V + 4 (recall that L = I — V + 1). Suppose interaction is ¢, then
pV =21 +n. E.g. for \¢*, p=4, get D =4 —n.

So for A\¢*, p =4, get D = 4 — n. This fits with what we found for n = 2, there was

a quadratic divergence,
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i.e. D = 2. For n =4, we get D = 0, which means a log divergence. For n > 4, we get
D < 0, which means that there is no divergence at all (superficially, at least)! So the only
two divergent cases are n = 2 and n = 4. The point will be that we can absorb these two
divergent cases into corrections to the two parameters m and A. That is the statement
that the theory for p = 4 is renormalizable.

For p = 6, write 4V, + 6V = 2] 4+ n, get D = 4 — n 4+ 2V5. The V, vertex is
renormalizable, the Vg is not. For A¢*, the UV divergent terms are n = 2,4. Higher n
diagrams only have sub-divergences, which will be accounted for by properly treating the
n = 2 and n = 4 cases. Example of a n = 6 diagram with a sub-divergence from the n = 2
diagram. Contrast \s¢? with a A\3¢ theory (super-renormalizable) and a A\g¢® theory
(non-renormalizable).

More generally, with bosons and fermions, D = Y, n;d; +2(IB)+3(IF)—4) . n;+4,
where n; is the number of vertices of i-th type and d; is the number of derivatives in that
interaction, and IB and IF are the numbers of internal boson and fermion lines. Then
D=-B-3F+4+Y (dimL; —4), where B and F are the numbers of external bose and
fermion lines.

e Dimensional analysis and understanding the degrees of divergence by power-
counting. In i = ¢ = 1 units, dimensionful quantities can be written as  ~ m!®!, which
defines [z], the mass dimension of x. In particular, in D space-time dimensions, we have
[S] = 0 and [dPx] = —D, so [£] = D so scalars have [¢] = (D — 2)/2 and fermions have
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[¢] = (D —1)/2. We see that a A\,¢” theory has [\,] = D — p(D — 2)/2. In particular,
for D =4, get [\p] = 4 — p, showing why p = 4 is special, as compared with say A\g ~ M
and g ~ M 2. Since I'™ has units of action, i.e. A, it has [[™] = 0. So a contribution
with e.g. Vg vertices has, on dimensional grounds, a factor of (A\¢E?)"s, where E is some
energy scale. This reproduces the degree of UV divergence if we take £ ~ A — oco. Dis-
cuss similar power counting for gravity, and for Fermi’s 4-fermion weak-interaction vertex.
Interpretation as low-energy effective theory with cutoff. ”Non-renormalizable” theories
are fine, and actually nice, in the IR, and just need some fixing up in the UV, but some
UV completion.

General integrals
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with n integer and I'm(a) > 0 and k in Minkowski space. See
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where we used the solid angle Qp_; = 27P/2/T'(D/2), which is 272 for D = 4. Get
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where ... are terms involving the regulator.



