1/31/11 Lecture 8 outline
e As we discussed last time, general green’s functions can be built as tree-level dia-

grams, composed of the 1PI building blocks. This is expressed mathematically via

WI[J] =T[¢] + /d4xJ(a:)$(a:).

06 = W) - [ dad(@)de).
Legendre transform, like F' = F — T'S in stat mech; get other variable via

W (0]6(x)[0) __ 9
o) = 6J(x)  (0[0), R /= _%FM.

Here T'[¢] is the quantum effective action, defined by
1PI diagram = z'f(”)(pl, e Dn),

where the external propagators are amputated, and the (27)%6*(3", p;) is omitted, and for

the 1PI propagator we define the 1PI diagram to be —iIl’(p), and we instead define
iT® (p, —p) = 1PI diagram + i(p? — m?) = i(p® — m? — II'(p?)).

As we saw, summing the 1PI diagrams then gives for the full propagator

) )
Dip) = 2 - p?2 —m? —1I'(p?)’

so the self energy I’ (p?) is like a correction to the mass.

In position space

DM (21, .. 2n) = (To(x1) ... d(x0))|1p1-

and

Tl =2, o [t ot o).

is called quantum effective action. As discussed last time,

(S[o] + O(h)),

SIS

Il¢] =
where the latter terms are quantum loop corrections.
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Again, the point is that the quantum effects are accounted for in the quantum effective
action. All quantum green’s functions (and hence amplitudes) can be computed by a
classical analysis (tree-diagrams), using the quantum effective action.

o Writing hl'[¢] = [ Less, the quantum effective lagrangian is of the form L.r; =
2 2[9)0,00 ¢ + ... — Voss(¢), where ... are higher derivative terms and V.;7(¢) is the
effective potential, which determines the low-energy momentum properties of the theory.

One-loop effective potential for \¢*:
W L[ A% 1 »*\"
Veff(d))_znz_:l2n/(27r)4 )\kz—mz-l-ieQ

d*kg 1?2
=1 Im 1+ 2"
2/<27r>4 n( +k%+m2)

(S. Coleman and E. Weinberg.) Symmetry factors: 1/n! not all the way cancelled, because

of Z,, rotation symmetry, and reflection, gives 1/2n. At each vertex, can exchange external
lines, so 1/4! not all the way cancelled, leads to 1/2 for each vertex. In the last expression
we rotated to Euclidean space, d*k = id*kg. Still have to explain how to handle kg
integral; we’ll discuss this soon.

e Another example of a 1-loop term, the self-energy for Ag?*:

—iIl' (p?) = (—i/\)l/ d'k ! + more loops.
2 | @r)tk? —m2

Going to Euclidean space, d*k = id*kg,

' (p?) = l)\/ d*kp ! + more loops
2 (27m)* k2% + m? '

Recall expression Qp_1 = 277/2/T(D/2) is the surface area of a unit sphere SP~'. For
D =4, get Q3 = 272, s0

am2 (A udu B Am? <A2 A2 )

H/ 2 — — ——l 1 n
") =550 |, w1 3om2 \mz oe(lH5)

Here A is a UV momentum cutoff. Result is quadratically (and also log) divergent as
A — oo. The subject of renormalization is the physical interpretation of these divergences.
The first thing to do is to regulate them, as we did above with a momentum cutoff. There

are other ways to regulate. How one regulates is physically irrelevant. The physics is in
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the renormalization interpretation of the regulated results, and at the end of the day the
choice of regulator doesn’t matter.
e Study more generally the superficial degree of divergence of 1PI diagrams. Consider

the general form of T'("™):

1

L
d*k; 1
™ N/ v
11:[1 (2m)4 JI_I 12 —m? +ie

1

For large k the integrand behaves as ~ k*=2!. Degree of UV divergence (superficially) is
D =4L — 21 =21 — 4V + 4 (recall that L = I — V 4 1). Suppose interaction is ¢, then
pV =21 +n.

E.g. for A\¢*, p = 4, get D = 4—n. This fits with what we found for n = 2, there was a
quadratic divergence, i.e. D = 2. For n = 4, we get D = 0, which means a log divergence.
For n > 4, we get D < 0, which means that there is no divergence at all (superficially, at
least)! So the only two divergent cases are n = 2 and n = 4. The point will be that we can
absorb these two divergent cases into corrections to the two parameters m and . That is

the statement that the theory for p = 4 is renormalizable.



