1/26/11 Lecture 7 outline
e Recall
W) _ N/[d¢]e%(s[¢]+f o)

We went back to defining the source J such that ¢(z) — —ih 57— J(m).

hz /d zy ... d* e, GU) ()BT () L T ().

As we discussed, W[J] = >",2, R~ W,_1, where ¢ is the loop number. Including all loops,

SW 1 6z[J] _ (0]¢(2)]0),
5J — Z[J]6J(z)  (0]0),

= ¢().

¢(z) can be interpreted as the average of ¢(x) in the presence of the source; sometimes
called classical field, so often people write this with ¢(z) = ¢ (), which is how we wrote
it before. Let’s use the different notation for today, to avoid notational confusion with the
quantity ¢, discussed last time.

Working to tree-level only, we saw

Wl =S+ [6ud be= s WaAldl, = =5 Sl6).

A Legendre transform, between ¢.(x) and J(x). Today, we extend this to include loops.

Here is where we're headed:

WI[J] =T[¢] + /d4xJ(a:)$(a:).

A Legendre transform, like FF = E —T'S in Stat Mech. There is also the inverse transform:

r@ = Wi - / d'2J ()3 ().

And
W (0]6(x)[0) __ 9
o) = 6J(x)  (0[0), R = _%FM.

Here I'[¢] is the quantum effective action, which we’ll define today. The point is that
W{J], which contains all connected diagrams, including loops, can be obtained by tree-
level diagrams, provided we replace the classical action with the quantum effective action.

Draw example diagrams, illustrating the statement.
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e Aside. We have seen that the loop expansion is an expansion in powers of A, since
diagrams go like AX71. Question: are we expanding in % (loops), or in powers of the
small coupling constants, or both? Answer: it’s generally the same expansion. Consider
e.g. A¢" interaction. Then a connected diagram with F external lines (amputating their
propagators) and [ internal lines and V' vertices is ~ RT=VAV. Now we use L = I —
V 4+ 1 and F + 21 = rV (conservation of ends of the lines) to get that the diagram is
~ (h)\Q/(T_Q))L_l NE/(r=2) "so for fixed E the loop expansion is an expansion in powers of
the effective coupling a ~ AA2/72,

e Define a further specialization of the diagrams, those that are 1PI: one - particle irre-
ducible. The definition is that the diagrams is connected, and moreover remains connected
upon removing any one internal progagator (and amputating all external legs).

eExamples of n = 2, 4,6 point 1PI diagrams in A¢?.

e In momentum space, it is defined from the 1PI diagram, with all external momenta
taken to be incoming:

1PI diagram = if(n)(p1, .o Dn)s

where the external propagators are amputated, and the (27)*6*(>", p;) is omitted. If there
is an interaction like V' = g¢™/n!, then, at tree-level, (™ = —g. Special definition for case

n = 2 : we define the 1PI diagram to be —iIl’(p), and we instead define
iL®) (p, —p) = 1PI diagram + i(p? — m?) = i(p? — m? — I’ (p?)).
Define position space 1PI diagrams by Fourier transform. They correspond to
T (21, ... 25) = (TH(1) ... d(x0))1pr-

e 2-point function, via summing geometric series:

1 1
D(p)==—— = .
P)=F6) = pp—mr — ()
—iIl’ is computed from the 1PI diagrams. IT'(p?) is called the self-energy, like momentum
dependent mass term. The special definition of I'®) is because D(p) = i/T'?) will be nice,
and allow extending to higher point functions.
e The point of the 1PI diagrams is that the quantum loop corrections are simply

obtained by replacing the vertices with the 1PI greens functions! Indeed, Draw pictures
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for n = 2,4,6 point functions. Obtain the full W[J] via tree-graphs assembled from the
1PI building blocks.

e Note that there are are no tree level IPI diagrams for '™ except for n = 4 in A¢?,
so D7) = —)\h_lénA + O(hY) 4 .... At order /°, i.e. 1-loop, note that there are terms for
all even n. There can not be terms for odd n, because of the ¢ — —¢ symmetry.

e There is also a generating function for the 1PI green’s functions:

1
L[¢] = Zl — /d4a:1 cd e, D) (2w o(@) . d().
This quantity is called the effective action. Find that

Lol = = (Slgl + O(n)) .-

SIS

E.g. in \¢*, T[¢] = h° [d*z[50(—0* — m?)¢ — ;A¢*]+(quantum corrections). The
quantum corrections are e.g. corrections to the mass from m? — m?+halIl’ (pz), a correction
to A at order %, and higher powers of ¢ at order A~ (k%) for L > 1.

e Connecting I'[¢] and W[J]. Introduce a (to count loops, formally take a — 0):

GiWllal — N / )Tl [ d'ais)/a

Then LHS=exp(i(W[J] + O(a))/a). Evaluate RHS by stationary phase:

oT[¢]
6¢(x)

which is some functional of J. So the RHS is

= —J({L’) for Qf):a(x):

N AT+ [ d'zT3+0(/a)

Conclude
Wil =T+ [ a3,

This is a Legendre transform. Like F' = E — T'S in Stat Mech. There is also the inverse

transform:

nwzwm—/ﬁumaw

¢(z) can be interpreted as the average of ¢(x) in the presence of the source; sometimes

called classical field:

— . OW[J] _ (0]¢(2)]0)
¢(z) = §J(x) — (0]0); ’
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The functional derivatives of I'[¢], upon setting ¢ = 0, give I'™ (x4, ...x,,). In particular,

OTléc] |-, =TW(z)=0.

o(x) =0

Recall from last time that we have £ = %ama% — %m2¢>2 — %)\& + ¢J, with the
source term J. The classical field EOM is

(0,0 + m?)6e = — A8 + T(2).

As discussed last time, we can solve this in perturbation theory in A, with only tree-level
diagrams. The generating functional for tree-level diagrams is W.[J] = S[¢.] + [ d*zJ¢..

The field ¢ satisfies the same equation, up to order & corrections:
_ 1 _
(0,0" + m2)g = -gw” + J(z) + O(h).

So, at the classical level, ¢, = ¢. But ¢ includes the quantum loop corrections.



