
1/26/11 Lecture 7 outline

• Recall

eiW [J ] = N

∫

[dφ]e
i

h̄

(

S[φ]+
∫

Jφ
)

.

We went back to defining the source J such that φ(x) → −ih̄ δ
δJ(x) .

iW [J ] = h̄
∞
∑

n=1

in

n!

∫

d4x1 . . . d4xnG(n)
conn(x1, . . . xn)h̄−nJ(x1) . . . J(xn).

As we discussed, W [J ] =
∑∞

ℓ=0 h̄ℓ−1Wℓ−1, where ℓ is the loop number. Including all loops,

δW

δJ
=

1

Z[J ]

δZ[J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

≡ φ̄(x).

φ(x) can be interpreted as the average of φ(x) in the presence of the source; sometimes

called classical field, so often people write this with φ̄(x) = φcl(x), which is how we wrote

it before. Let’s use the different notation for today, to avoid notational confusion with the

quantity φc discussed last time.

Working to tree-level only, we saw

W−1[J ] = S[φc] +

∫

φcJ, φc =
δ

δJ
W−1[J ], J = −

δ

δφc
S[φc].

A Legendre transform, between φc(x) and J(x). Today, we extend this to include loops.

Here is where we’re headed:

W [J ] = Γ[φ] +

∫

d4xJ(x)φ(x).

A Legendre transform, like F = E−TS in Stat Mech. There is also the inverse transform:

Γ[φ] = W [J ] −

∫

d4xJ(x)φ(x).

And

φ(x) =
δW [J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

, J = −
δ

δφ
Γ[φ].

Here Γ[φ] is the quantum effective action, which we’ll define today. The point is that

W [J ], which contains all connected diagrams, including loops, can be obtained by tree-

level diagrams, provided we replace the classical action with the quantum effective action.

Draw example diagrams, illustrating the statement.
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• Aside. We have seen that the loop expansion is an expansion in powers of h̄, since

diagrams go like h̄L−1. Question: are we expanding in h̄ (loops), or in powers of the

small coupling constants, or both? Answer: it’s generally the same expansion. Consider

e.g. λφr interaction. Then a connected diagram with E external lines (amputating their

propagators) and I internal lines and V vertices is ∼ h̄I−V λV . Now we use L = I −

V + 1 and E + 2I = rV (conservation of ends of the lines) to get that the diagram is

∼
(

h̄λ2/(r−2)
)L−1

λE/(r−2), so for fixed E the loop expansion is an expansion in powers of

the effective coupling α ∼ h̄λ2/r−2.

• Define a further specialization of the diagrams, those that are 1PI: one - particle irre-

ducible. The definition is that the diagrams is connected, and moreover remains connected

upon removing any one internal progagator (and amputating all external legs).

•Examples of n = 2, 4, 6 point 1PI diagrams in λφ4.

• In momentum space, it is defined from the 1PI diagram, with all external momenta

taken to be incoming:

1PI diagram ≡ iΓ̃(n)(p1, . . . pn),

where the external propagators are amputated, and the (2π)4δ4(
∑

i pi) is omitted. If there

is an interaction like V = gφn/n!, then, at tree-level, Γ̃(n) = −g. Special definition for case

n = 2 : we define the 1PI diagram to be −iΠ′(p), and we instead define

iΓ̃(2)(p,−p) = 1PI diagram + i(p2 − m2) = i(p2 − m2 − Π′(p2)).

Define position space 1PI diagrams by Fourier transform. They correspond to

Γ(n)(x1, . . . xn) = 〈Tφ(x1) . . . φ(xn)〉|1PI .

• 2-point function, via summing geometric series:

D(p) =
i

Γ̃(2)
=

i

p2 − m2 − Π′(p2)
.

−iΠ′ is computed from the 1PI diagrams. Π′(p2) is called the self-energy, like momentum

dependent mass term. The special definition of Γ̃(2) is because D(p) = i/Γ̃(2) will be nice,

and allow extending to higher point functions.

• The point of the 1PI diagrams is that the quantum loop corrections are simply

obtained by replacing the vertices with the 1PI greens functions! Indeed, Draw pictures
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for n = 2, 4, 6 point functions. Obtain the full W [J ] via tree-graphs assembled from the

1PI building blocks.

• Note that there are are no tree level IPI diagrams for Γ̃(n) except for n = 4 in λφ4,

so Γ̃(n) = −λh̄−1δn,4 +O(h̄0) + . . .. At order h̄0, i.e. 1-loop, note that there are terms for

all even n. There can not be terms for odd n, because of the φ → −φ symmetry.

• There is also a generating function for the 1PI green’s functions:

Γ[φ] =

∞
∑

n=1

1

n!

∫

d4x1 . . . d4xnΓ(n)(x1, . . . xn)φ(x1) . . . φ(xn).

This quantity is called the effective action. Find that

Γ[φ] =
1

h̄
(S[φ] + O(h̄)) .

E.g. in λφ4, Γ[φ] = h̄−1
∫

d4x[ 12φ(−∂2 − m2)φ − 1
4!λφ4]+(quantum corrections). The

quantum corrections are e.g. corrections to the mass from m2 → m2+h̄Π′(p2), a correction

to λ at order h̄, and higher powers of φ at order h̄−1(h̄L) for L ≥ 1.

• Connecting Γ[φ] and W [J ]. Introduce a (to count loops, formally take a → 0):

eiW [J,a] ≡ N

∫

[dφ]ei(Γ[φ]+
∫

d4xJφ)/a.

Then LHS=exp(i(W [J ] + O(a))/a). Evaluate RHS by stationary phase:

δΓ[φ]

δφ(x)
= −J(x) for φ = φ(x),

which is some functional of J . So the RHS is

Nei(Γ[φ]+
∫

d4xJφ+O(
√

a)).

Conclude

W [J ] = Γ[φ] +

∫

d4xJ(x)φ(x).

This is a Legendre transform. Like F = E − TS in Stat Mech. There is also the inverse

transform:

Γ[φ] = W [J ] −

∫

d4xJ(x)φ(x).

φ(x) can be interpreted as the average of φ(x) in the presence of the source; sometimes

called classical field:

φ(x) =
δW [J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

.
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The functional derivatives of Γ[φ], upon setting φ = 0, give Γ(n)(x1, . . . xn). In particular,

δΓ[φc]

δφ(x)

∣

∣

φ=0
= Γ(1)(x) = 0.

Recall from last time that we have L = 1
2∂µφ∂µφ − 1

2m2φ2 − 1
4!λφ4 + φJ , with the

source term J . The classical field EOM is

(∂µ∂µ + m2)φc = −
1

3!
λφ3

c + J(x).

As discussed last time, we can solve this in perturbation theory in λ, with only tree-level

diagrams. The generating functional for tree-level diagrams is Wc[J ] = S[φc] +
∫

d4xJφc.

The field φ satisfies the same equation, up to order h̄ corrections:

(∂µ∂µ + m2)φ = −
1

3!
λφ

3
+ J(x) + O(h̄).

So, at the classical level, φc = φ. But φ includes the quantum loop corrections.
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