$1/24/11$ Lecture 6 outline

- Examples of diagrams contributing to $G_{conn}^{(n)}$ for $n = 2, 4, 6$, in $\lambda \phi^4$.
- \bullet Last time, define a generating functional $iW[J]\equiv \ln Z[J],$ i.e.

$$
e^{iW[J]} = N \int [d\phi] e^{\frac{i}{\hbar} \left(S[\phi] + \hbar \int J\phi \right)}.
$$

We went back to defining the source J such that $\phi(x) \to -i\hbar \frac{\delta}{\delta I(x)}$ $\frac{\delta}{\delta J(x)}$. As we'll now motivate, it turns out that W is the generating functional for the *connected* Greens functions:

$$
iW[J] = \hbar \sum_{n=1}^{\infty} \frac{i^n}{n!} \int d^4x_1 \dots d^4x_n G_{conn}^{(n)}(x_1, \dots x_n) \hbar^{-n} J(x_1) \dots J(x_n).
$$

In momentum space, we can write:

$$
iW[J] = \hbar \sum_{n=1}^{\infty} \frac{i^n}{n!} \int \frac{d^4k_1}{(2\pi)^4} \dots \frac{d^4k_n}{(2\pi)^4} \tilde{J}(-k_1) \dots \tilde{J}(-k_n) \hbar^{-n} \tilde{G}_c(k_1, \dots k_n).
$$

Will later recall LSZ: how to relate Green's functions to S-matrix elements (and hence physical observables). As seen there, only connected diagrams contribute; this is why W is useful.

Examples, to illustrate how $iW[J] \equiv \ln Z[J]$ gives the connected diagrams. First consider the 1-point function

$$
-i\frac{\delta iW}{\delta J} = \frac{1}{Z[J]} \frac{\delta Z[J]}{\delta J(x)} = \frac{\langle 0|\phi(x)|0\rangle_J}{\langle 0|0\rangle_J} \equiv \phi_{cl}(x).
$$

Picture this diagrammatically as a propagator connecting the point x to a blob, where the blob represents a $\sum_{n} \lambda^{n}$ sum of diagrams. Note that there are no disconnected diagrams, thanks to the denominator above which subtracts out the disconnected vacuum bubble diagrams.

Now consider the two point function

$$
(-i)^2 \frac{\delta^2}{\delta J(x)\delta J(y)} (iW) = \langle \phi(x)\phi(y) \rangle_J - \langle \phi(x) \rangle_J \langle \phi(y) \rangle_J.
$$

Note that $\langle \phi(x)\phi(y)\rangle$ has two types of contributions, connected and disconnected; the 2nd term precisely cancels off the disconnected ones. The connected one is pictured as a line connecting x and y, with a single blob propagator, whereas the disconnected contribution has two disconnected blobs. Similarly $\delta W/\delta J^3$ has terms like $\langle \phi \phi \phi \rangle - (\langle \phi \phi \rangle \langle \phi \rangle + 2 \ terms) +$ $2\langle\phi\rangle\langle\phi\rangle\langle\phi\rangle$, which give precisely $\langle\phi\phi\phi\rangle_{connected}$. Can prove by induction that the log in W properly subtracts away all non-connected diagrams!

• Let's consider the powers of \hbar . Example: free Klein Gordon theory. We found

$$
W[J] = i\frac{1}{2}\hbar^{-1} \int d^4x \int d^4y J(X) D_F(x - y) J(y).
$$

We see that the only connected Green's function in this case is the 2-point function:

$$
G_{free}^{(2)}(x,y) \equiv G(x-y) = \hbar D_F(x-y).
$$

So the propagator contains a factor of \hbar . In an interacting theory, like $\lambda \phi^4$,

$$
G^{(2)}(x,y) = \hbar D_F(x - y) + O(\lambda)
$$
 corrections.

• In an interacting theory, the vertices have factors like $-i\lambda/\hbar$, while the proagators are proportional to \hbar . Suppose a diagram has I internal lines, V vertices, L loops. Connected graphs have $L = I - V + 1$. Graphs go like $\hbar^{-V} \hbar^{I} = \hbar^{L-1}$. So $W[J] = W_{-1} \hbar^{-1} + W_0 +$ $\hbar W_1 + \ldots$, where W_{-1} are tree-graphs (no loops), W_0 gives the 1-loop graphs, etc.

• Consider $W_{-1}[J]$, the leading term in the $\hbar \to 0$ limit. In this limit, the functional integral localizes on the classical path, so

$$
W_{-1}[J] = S[\phi_c] + \int \phi_c J.
$$

• Emphasize that tree graphs are classical. Example: consider $\mathcal{L} = \frac{1}{2}$ $\frac{1}{2}\partial_\mu\phi\partial^\mu\phi$ – $\frac{1}{2}m^2\phi^2 - \frac{1}{4!}\lambda\phi^4 + \phi J$, with the source term J. The classical field EOM is

$$
(\partial_{\mu}\partial^{\mu} + m^2)\phi_c = -\frac{1}{3!}\lambda\phi_c^3 + J(x).
$$

We can solve this classically to zero-th order in λ as

$$
\phi_c^{(0)}(x) = \int d^4y D_F(x - y)iJ(y),
$$

where $(\partial_{\mu}\partial^{\mu} + m^2)D_F(x - y) = -i\delta(x - y)$. To solve to next order in λ , we plug this back into the above:

$$
\phi_c^{(1)}(x) = \phi_c^{(0)}(x) - i\frac{1}{3!}\lambda \int d^4y D_F(x - y) \phi_c^{(0)}(y)^3
$$

Continue this way, this can be represented as a sum of tree-level diagrams, with one ϕ and different numbers of J's on the external legs. This is perturbation theory for the classical field theory.

• To summarize the above, we solve $\frac{\delta}{\delta \phi}(S[\phi] + \int J\phi)|_{\phi=\phi_c} = 0$ for $\phi_c[J]$. Here we plugged the solution $\phi_c[J]$ back in to the action and source term, to get $W_{-1}[J] = S[\phi_c] +$ $\int \phi_c J$. The LHS depends on J but not ϕ_c ; indeed, we solve for ϕ_c by $\frac{\delta}{\delta \phi_c} W_{-1}[J] = 0$. Conversely $S[\phi_c]$ does not depend on $J.$ Indeed,

$$
\phi_c = \frac{\delta}{\delta J} W_{-1}[J], \qquad J = -\frac{\delta}{\delta \phi_c} S[\phi_c]
$$

which fits with $\frac{\delta}{\delta J}S[\phi_c] = 0$. $\phi_c = \frac{\delta}{\delta J}W_{-1}[J]$ is the classical limit of $\phi_{cl}(x) \equiv$ $\langle 0|\phi|0\rangle_J/\langle 0|0\rangle_J.$

This is a Legendre transform, between $\phi_c(x)$ and $J(x)$. Recall e.g. in thermodynamics, $dE = T dS - P dV$, so $E = E(S, V)$, and then can define e.g. $E + PV = H(S, P)$, so adding PV to E changes it from being a function of V to being a function of P, with $P = -\partial E/\partial V$ and $V = \partial H/\partial P$. Likewise, above, for $S[\phi_c]$ vs $W_{-1}[J]$.