
1/24/11 Lecture 6 outline

• Examples of diagrams contributing to G
(n)
conn for n = 2, 4, 6, in λφ4.

• Last time, define a generating functional iW [J ] ≡ lnZ[J ], i.e.

eiW [J ] = N

∫

[dφ]e
i

h̄

(

S[φ]+h̄
∫

Jφ
)

.

We went back to defining the source J such that φ(x) → −ih̄ δ
δJ(x) . As we’ll now motivate,

it turns out that W is the generating functional for the connected Greens functions:

iW [J ] = h̄

∞
∑

n=1

in

n!

∫

d4x1 . . . d4xnG(n)
conn(x1, . . . xn)h̄−nJ(x1) . . . J(xn).

In momentum space, we can write:

iW [J ] = h̄

∞
∑

n=1

in

n!

∫

d4k1

(2π)4
. . .

d4kn

(2π)4
J̃(−k1) . . . J̃(−kn)h̄−nG̃c(k1, . . . kn).

Will later recall LSZ: how to relate Green’s functions to S-matrix elements (and hence

physical observables). As seen there, only connected diagrams contribute; this is why W

is useful.

Examples, to illustrate how iW [J ] ≡ lnZ[J ] gives the connected diagrams. First

consider the 1-point function

−i
δiW

δJ
=

1

Z[J ]

δZ[J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

≡ φcl(x).

Picture this diagrammatically as a propagator connecting the point x to a blob, where the

blob represents a
∑

n λn sum of diagrams. Note that there are no disconnected diagrams,

thanks to the denominator above which subtracts out the disconnected vacuum bubble

diagrams.

Now consider the two point function

(−i)2
δ2

δJ(x)δJ(y)
(iW ) = 〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J .

Note that 〈φ(x)φ(y)〉 has two types of contributions, connected and disconnected; the 2nd

term precisely cancels off the disconnected ones. The connected one is pictured as a line

connecting x and y, with a single blob propagator, whereas the disconnected contribution

has two disconnected blobs. Similarly δW/δJ3 has terms like 〈φφφ〉−(〈φφ〉〈φ〉+2 terms)+
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2〈φ〉〈φ〉〈φ〉, which give precisely 〈φφφ〉connected. Can prove by induction that the log in W

properly subtracts away all non-connected diagrams!

• Let’s consider the powers of h̄. Example: free Klein Gordon theory. We found

W [J ] = i1
2
h̄−1

∫

d4x

∫

d4yJ(X)DF (x − y)J(y).

We see that the only connected Green’s function in this case is the 2-point function:

G
(2)
free(x, y) ≡ G(x − y) = h̄DF (x − y).

So the propagator contains a factor of h̄. In an interacting theory, like λφ4,

G(2)(x, y) = h̄DF (x − y) + O(λ) corrections.

• In an interacting theory, the vertices have factors like −iλ/h̄, while the proagators are

proportional to h̄. Suppose a diagram has I internal lines, V vertices, L loops. Connected

graphs have L = I − V + 1. Graphs go like h̄−V h̄I = h̄L−1. So W [J ] = W−1h̄
−1 + W0 +

h̄W1 + . . ., where W−1 are tree-graphs (no loops), W0 gives the 1-loop graphs, etc.

• Consider W−1[J ], the leading term in the h̄ → 0 limit. In this limit, the functional

integral localizes on the classical path, so

W−1[J ] = S[φc] +

∫

φcJ.

• Emphasize that tree graphs are classical. Example: consider L = 1
2∂µφ∂µφ −

1
2m2φ2 − 1

4!λφ4 + φJ , with the source term J . The classical field EOM is

(∂µ∂µ + m2)φc = −
1

3!
λφ3

c + J(x).

We can solve this classically to zero-th order in λ as

φ(0)
c (x) =

∫

d4yDF (x − y)iJ(y),

where (∂µ∂µ +m2)DF (x− y) = −iδ(x− y). To solve to next order in λ, we plug this back

into the above:

φ(1)
c (x) = φ(0)

c (x) − i
1

3!
λ

∫

d4yDF (x − y)φ(0)
c (y)3

Continue this way, this can be represented as a sum of tree-level diagrams, with one φ and

different numbers of J ’s on the external legs. This is perturbation theory for the classical

field theory.
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• To summarize the above, we solve δ
δφ

(S[φ] +
∫

Jφ)|φ=φc
= 0 for φc[J ]. Here we

plugged the solution φc[J ] back in to the action and source term, to get W−1[J ] = S[φc] +
∫

φcJ . The LHS depends on J but not φc; indeed, we solve for φc by δ
δφc

W−1[J ] = 0.

Conversely S[φc] does not depend on J . Indeed,

φc =
δ

δJ
W−1[J ], J = −

δ

δφc

S[φc]

which fits with δ
δJ

S[φc] = 0. φc = δ
δJ

W−1[J ] is the classical limit of φcl(x) ≡

〈0|φ|0〉J/〈0|0〉J .

This is a Legendre transform, between φc(x) and J(x). Recall e.g. in thermodynamics,

dE = TdS−PdV , so E = E(S, V ), and then can define e.g. E +PV = H(S, P ), so adding

PV to E changes it from being a function of V to being a function of P , with P = −∂E/∂V

and V = ∂H/∂P . Likewise, above, for S[φc] vs W−1[J ].
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