1/24/11 Lecture 6 outline
e Examples of diagrams contributing to GEZ?m for n = 2,4,6, in \¢*.

e Last time, define a generating functional iW[J] =1n Z[J], i.e.
1W[J N/d¢ % S[Qﬁ]—l—th(f))‘

We went back to defining the source .J such that ¢(z) — —ihs77— J( y- As we’ll now motivate,

it turns out that W is the generating functional for the connected Greens functions:

hz py /d 21 .. d*e, G (21, .. xR T (x1) .. T ().

In momentum space, we can write:

WlJ] = hzn'/ d4k1 ..d4 4J(—k1)...j(—kn)h_”éc(kl,...kn).

Will later recall LSZ: how to relate Green’s functions to S-matrix elements (and hence
physical observables). As seen there, only connected diagrams contribute; this is why W
is useful.

Examples, to illustrate how iW[J] = InZ[J] gives the connected diagrams. First

consider the 1-point function

oW1 6zZ[J] _ {01¢(2)]0) — ()
5J  Z[J]6J(x)  (0]oy, TN

Picture this diagrammatically as a propagator connecting the point x to a blob, where the
blob represents a » . A" sum of diagrams. Note that there are no disconnected diagrams,
thanks to the denominator above which subtracts out the disconnected vacuum bubble
diagrams.
Now consider the two point function
N2 &2 .
(0 535777 ) = (@) = (6l (6 (0).
Note that (¢(z)¢(y)) has two types of contributions, connected and disconnected; the 2nd
term precisely cancels off the disconnected ones. The connected one is pictured as a line

connecting x and y, with a single blob propagator, whereas the disconnected contribution
has two disconnected blobs. Similarly 6W/§.J2 has terms like (¢po) — ((¢o) (@) +2 terms)+
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2(¢p)(¢){¢), which give precisely (POP)connected- Can prove by induction that the log in W
properly subtracts away all non-connected diagrams!

e Let’s consider the powers of h. Example: free Klein Gordon theory. We found
W[J] = i%h_I/d‘lx/d‘lyJ(X)DF(x —y)J(y).
We see that the only connected Green’s function in this case is the 2-point function:
G, (x,y) = Gz — y) = hDp(x — y).
So the propagator contains a factor of h. In an interacting theory, like A¢?,
G (z,y) = hDp(x — y) + O()\) corrections.

e In an interacting theory, the vertices have factors like —i\ /R, while the proagators are
proportional to h. Suppose a diagram has I internal lines, V' vertices, L loops. Connected
graphs have L = I — V + 1. Graphs go like A=V A! = R So W[J] = W_1h™ ' + Wy +
hW1 + ..., where W_; are tree-graphs (no loops), Wy gives the 1-loop graphs, etc.

e Consider W_;[J], the leading term in the A — 0 limit. In this limit, the functional

integral localizes on the classical path, so
Woald] = Siéd) + [ o

e Emphasize that tree graphs are classical. Example: consider £ = %ama% —

%m2¢2 — %Ad)‘l + ¢J, with the source term J. The classical field EOM is

1
(00" + M) o =~ \6% + J (a)
We can solve this classically to zero-th order in A as
o) = [ dybete - y)is(y)

where (9,0" + m?)Dp(x —y) = —id(z — y). To solve to next order in A, we plug this back
into the above:

o0 (@) = ¢ (x) — i3

Continue this way, this can be represented as a sum of tree-level diagrams, with one ¢ and

1
3 / d*yDp(z — y)¢{” (y)*

different numbers of J’s on the external legs. This is perturbation theory for the classical

field theory.



e To summarize the above, we solve %(S[gb] + [JP)|p=p. = 0 for ¢.[J]. Here we
plugged the solution ¢.[J] back in to the action and source term, to get W_1[J] = S[¢.] +
[ ¢.J. The LHS depends on J but not ¢.; indeed, we solve for ¢. by (S%W_l[z]] = 0.

Conversely S[¢.] does not depend on J. Indeed,

) )
¢CZ_W—1[J]7 J:_&Zsc

6J
which fits with 5S[¢.] = 0. ¢. = SW_i[J] is the classical limit of ¢n(z) =
(01¢10).;/(0]0).;-

This is a Legendre transform, between ¢.(x) and J(z). Recall e.g. in thermodynamics,
dE =TdS—PdV,so E = E(S,V), and then can define e.g. E+ PV = H(S, P), so adding
PV to E changes it from being a function of V' to being a function of P, with P = —90F/0V
and V = 0H/OP. Likewise, above, for S[¢.] vs W_1[J].
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