
1/5/11 Lecture outline

• Last time, path integral in QM. E.g.

U(xa, xb;T ) = 〈xb|e−iHT/h̄|xa〉 =

∫
[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it. E.g. free particle, get

U(xb, xa;T ) =

(
2πih̄T

m

)−1/2

exp[im(xb − xa)2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)

Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
− 2m2

2h̄T
≈ mxλ

h̄T
= pλ/h̄.

Gives p = h̄k.

Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can show

p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb). Agrees

with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• The same derivation leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). E.g.

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =

∫
[dφ]eiS/h̄ S =

∫
d4xL.

1



This is then used to compute Green’s functions:

〈Ω|T
n∏

i=1

φH(xi)|Ω〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄). Again, as noted above, the T ordering will be automatic.

• Now introduce sources for the fields as a trick to get the time order products from

derivatives of a generating function (or functional).

• Consider QM with Hamiltonian H(q, p), modified by introducing a source for q,

H → H − f(t)q. (We could also add a source for p, but don’t bother doing so here.)

Consider moreover replacingH → H(1−iǫ), with ǫ→ 0+, which has the effect of projecting

on to the ground state at t → ±∞. As mentioned last lecture, this’ll be related to the iǫ

of the Feynman propagator. Consider the vacuum-to vacuum amplitude in the presence

of the source,

〈0|0〉f =

∫
[dq] exp[i

∫
dt(L+ f(t)q)/h̄] ≡ Z[f(t)].

Once we compute Z[f(t)] we can use it to compute arbitrary time-ordered expectation

values. Indeed, Z[f ] is a generating functional1 for time ordered expectation values of

products of the q(t) operators:

〈0|
n∏

j=1

Tq(tj)|0〉 =

n∏

j=1

1

i

δ

δf(tj)
Z[f ]

∣∣
f=0

,

where the time evolution e−iHt/h̄ is accounted for on the LHS by taking the operators in

the Heisnberg picture.

We’ll be interested in such generating functionals, and their generalization to quantum

field theory (replacing t→ (t, ~x)).

• We can explicitly evaluate the generating functional for the case of gaussian integrals,

e.g. the harmonic oscillator example.

To see how, let’s first consider ordinary (non functional), multi-dimensional gaussian

integrals:
N∏

i=1

dφi exp(−(φ,Bφ)) = πN/2(detB)−1/2,

where (φ,Bφ) =
∑

i φi(Bφ)i and (Bφ)i =
∑

j Bijφj . The integral was evaluated by chang-

ing variables in the dφi, to the eigenvectors of the symmetric matrix B; then the integrals

1 Recall how functional derivatives work, e.g. δ
δf(t)

f(t′) = δ(t − t′).
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decouple into a product of simple 1-variable gaussians. As before, we’ll be interested in

the gaussians with an i in the exponent, which we evaluate as mentioned before,

∫ ∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iǫ, with ǫ > 0, and then take ǫ→ 0+. So we’ll replace

B → −i(A+ iǫ).

• Now discuss generating functions. First consider ordinary (non-functional) gaussian

integrals. We’d like to evaluate integrals like

N∏

i=1

∫
dφif(φi) exp(−(φ,Bφ))

for functions, like products of the φi. We can do this by computing a generating function:

N∏

i=1

∫
dφif(φi) exp(−Bijφiφj) = f(

∂

∂Ji
)Z(Ji)

∣∣
Ji=0

Where

Z(Ji) ≡
N∏

i=1

∫
dφi exp(−Bijφiφi + Jiφi)

Evaluate via completing the square: the exponent is −(φ,Bφ) + (J, φ) = −(φ′, Bφ′) +
1
4 (J,B−1J), where φ′ = φ− 1

2B
−1J . So

Z(Ji) =

N∏

i=1

∫
dφi exp(−Bijφiφj + Jiφi) = πN/2(detB)−1/2 exp(B−1

ij JiJj/4)

We’ll want to compute amplitudes like

〈0|
∏

i Tq(ti)|0〉J=0

〈0|0〉J=0

and for these the detB factor above will cancel between the numerator and the denomina-

tor. This is related to the cancellation of vacuum bubble diagrams. The important piece

above is the exponent with the sources.
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• Now let’s apply the above to compute the generating functional for the example of

QM harmonic oscillator (scaling m = 1),

Z[J(t)] =

∫
[dq(t)] exp(− i

h̄

∫
dt

[
1
2q(t)(

d2

dt2
+ ω2)q(t) − J(t)q(t)

]
).

This is analogous to the multi-dimenensional gaussian above, where i is replaced with the

continuous label t,
∑

i →
∫
dt etc. and the matrix Bij is replaced with the differential

operator B → i
2h̄ ( d2

dt2 +ω2− iǫ), where the iǫ is to damp the gaussian, as mentioned above.

Also, we replace J → i
h̄
J as compared with above. So doing the gaussian gives a factor of

√
detB which we don’t need to compute now because it’ll cancel, and the exponent with

the sources from completing the square, which is the term we want. That involves B−1,

which we can compute by Fourier transforming. In the end, we get

〈0|0〉J = exp[−1
2 h̄

∫
dtdt′J(t)G(t− t′)J(t′)],

with G(t) the Green’s function for the oscillator, i(∂2
t + ω2i− ǫ)G(t) = iδ(t),

G(t) =

∫ ∞

−∞

dE

2πh̄

ie−iEt/h̄

E2/h̄2 − ω2 + iǫ
=

1

2ω
e−iω|t|. (1)

The −iǫ here does the same thing as in the Feynman propagator: the pole at E = h̄ω is

shifted below the axis and that at E = −h̄ω is shifted above. Equivalently, we can replace

E → E(1+ ⊂ ǫ), to tilt the integration contour below the −ω pole and above the +ω pole.

Note then that e−iEt/h̄ → e−iEt/h̄eEtǫ/h̄, which projects on to the vacuum for t→ ∞ (the

iǫ projects on to the vacuum in the far future and also the far past).

For t > 0, the E contour is closed in the LHP and the residue is at E = h̄ω, while for

t < 0 the contour is closed in the UHP, with residue at E = −h̄ω.

• Now that we know the generating functional, we can use it to compute time ordered

expectation values via

〈0|T
n∏

i=1

φH(ti)|0〉/〈0|0〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(ti) exp(iS/h̄) = Z−1
0

n∏

i=1

h̄

i

δ

δJ(t)
|J=0.

with Z0 =
∫

[dφ] exp(iS/h̄).
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