
3/9/11 Lecture 18 outline

• Last time, propagators for free, spin 1/2 fermions:

i

/k −m+ iε
,

and gauge field

Dµν =
−i
k2

[gµν −
kµkν
k2

+ ξ
kµkν
k2

]

Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator. Physics

is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s

choose to use Feynman gauge.)

• Recall QED Feynman rules, e.g. vertex: −ieγµ.

• The photon has 1PI propagator iΠµν(k) = (p2gµν − pµpν)Π(k2). Summing these

gives the full propagator. Writing it in Feynman gauge, get for the full propagator

−igµν/p2(1 − Π(p2)). Assuming that Π(p2) is regular at p2 = 0, get pole at p2 = 0 with

residue Z3 ≡ (1−Π(0))−1.

The electron has the full propagator S(p) = i/(/p−m−Σ(p), where for p nearm, S(p) =

iZ2/(/p−m). The 1PI interaction vertex (with electron having incoming momentum p (and

outgoing momentum p+k) and photon having incoming momentum k) is −ieΓµ(p+k, p),

where for k → 0, Γµ(p+ k, p)→ Z−11 γµ.

The W-T identity is

S(p+ k)(−iekµ)Γµ(p+ k, p)S(p) = e(S(p)− S(p+ k))

So

−ikµΓµ(pk, p) = S−1(p+ k)− S−1(p)

It’s easily verified to work for the free propagators, and the W-T identity shows it’s

an exact result in the full, interacting theory. Taking p near on-shell and k near 0, this

gives Z1 = Z2; this is an important consequence of gauge invariance. As we’ll see more

below, among other things, it ensures that e.g. the electron and the muon couple to the

gauge field with the same effective charge.

• Compute the correction to the photon propagator from a virtual electron/positron

loop:

iΠµν(q) = −(−ie)2
∫

d4k

(2π)4
tr

(
γµ

i

/k −m
γν

i

/k + q/−m

)
.
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Combine denominators using Feynman parameter

1

(k2 −m2)((k + q)2 −m2
=

∫ 1

0

dx
1

(`2 + x(1− x)q2 −m2)2

with ` = k + xq. Go to Euclidean space and do integrals using our previous tables of

integrals in dim-reg to find

Π(p2) = − 8e2

(4π)d/2
Γ(2− 1

2d)

∫ 1

0

dxx(1− x)∆
1
2d−2,

with ∆ = m2 − x(1− x)p2. Evaluating for d = 4− ε,

Π(p2) = −2α

π

∫ 1

0

dxx(1− x)

(
2

ε
− γ + log(4π/∆)

)
.

We’ll need to renormalize this.

• Let’s note some other interesting things about the finite part of Π(p2). Π(p2) has a

branch cut starting at p2 = 4m2, and its imaginary part above and below the cut have

Im(Π(p2 ± iε) = ∓α
3

√
1− 4m2

p2
(1 +

2m2

p2
),

which is related by the optical theorem to the total cross section for creating an on-shell

fermion-antifermion pair,
dσ

dΩ
=

|~p|
32π2s3/2

1

4

∑
spins

|M|2.

• Likewise, can compute the contribution of a virtual photon to the full electron

propagator

S(p) =
i

/p−m− Σ(p) + iε
,

where −iΣ is the 1PI contribution to the propagator. E.g. to 1 loop get

−iΣ(p2) = (−ie)2
∫

d4k

(2π)4
−igµν
k2

γµ
i

/p− /k −m
γν .

The function S(p) has a pole at the physical mass, mphys = m+ Σ(0), so the constant

part of Σ shifts the mass. The ∼ /p part of Σ renormalizes the residue of S(p). The residue

is iZ2. Again, we can add counterterms to shift these and preserve a renormalization

condition.
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• 1PI vertex for electron interacting with photon, −ieΓµ(p′, p). The tree-level term

is −ieγµ. The photon has momentum q = p′ − p. Can show that Lorentz and kinematic

structure is such that

Z2Γµ(p′, p) = γµF1(q2) + i
σµνqν

2m
F2(q2),

where σµν = 1
2 i[γ

µ, γν ] and Fi are “form factors.” The electron has magnetic moment

~µ = g(e~S/2m), with g = 2 + 2F2(0). The diagram for F2(0) at one-loop is convergent

(don’t even need to renormalize it), and yields F2(0) = α/2π. The diagram for F1(q2) is

UV, and also IR divergent at q2 = 0; needs renormalization. Define Γµ(q2 = 0) = Z−11 γµ.

The W.T. identity shows F1(0) = 1.

• We now renormalize. Bare and renormalized fields, and counterterms. ψB =

Z
1/2
2 ψR, AµB = Z

1/2
3 AµR, eBZ2Z

1/2
3 = eRZ1. LB = LR + Lc.t..

LR = −1

4
FRµνF

µν
R + ψ̄R(i/∂ − eR /AR −mR)ψR,

Lct = −1

4
δ3(FRµν)2 + ψ̄R(iδ2/∂ − δ1eR /AR − δm)ψR.

Where δ1 = Z1 − 1, δ2 = Z2 − 1, δ3 = Z3 − 1, and δm = Z2m0 −m.

In particular, the counter-term contributes to iΠµν as δΠ = −(Z3 − 1). So, to one

loop, we get

Π(p2) = −α
π
ε−1

2

3
+ (Z3 − 1)(1) + finite.

in MS, choose Z3 to cancel the 1/ε term only, so Z3 − 1 = −απ ε
−1 2

3 .

We’ll soon note that ephys =
√
Z3eB , or better α = e2phys/4π = Z3µ

−εαB . Write this

as αB = αµεZα, where

Zα ≡ Z−13 ≡ 1 +
∑
k

ak(α)ε−k.

In particular, we found above that a1 = 2α/3π to one-loop order.
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