
3/2/11 Lecture 16 outline

• Last time:

Γ̃
(n)
B (p1, . . . pn;λB ,mB , ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn;λR,mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormalization

point µ while he LHS does not. This leads to what is known as the renormalization group

equations, which state how the renormalized quantities must vary with µ. Take d/d lnµ

of both sides, and use dΓB/dµ = 0 gives(
∂

∂ lnµ
+ β(λR)

∂

∂λR
+ γm

∂

∂ lnmR
− nγ

)
Γ̃
(n)
R (p1, . . . pn;λR,mR, µ) = 0

with

β(λ) ≡ d

d lnµ
λR

γ = 1
2

d

d lnµ
lnZφ

γm =
d lnmR

d lnµ
.

E.g. for λφ4, recall LB = LR + Lc.t. and φB ≡ Z
1/2
φ φR, so we had Lc.t. = . . . −

δλµεφ4/4! where δλµε ≡ λBZ2
φ − λµε, which we’ll rewrite as

λB = µεZ−2φ (λ+ δλ) ≡ µελZλ

where

Zλ ≡ Z−2φ (1 +
δλ
λ

) ≡ 1 +
∑
k>0

ak(λ)ε−k.

The bare parameter λB is independent of µ, whereas λ depends on µ, such that the above

relation holds. Take d/d lnµ of both sides,

0 = (ελ+ β(λ, ε))Zλ + β(λ, ε)λ
dZλ
dλ

.

This equation must hold as a function of ε. Now Zλ = 1+εnegative, and dZλ/dλ = εnegative.

On the other hand, β(λ, ε) = dλR/d lnµ is non-singular as ε → 0, so β(λ, ε) = β(λ) +∑
n>0 βnε

n. Plugging back into the above equation then gives

β(λ, ε) = −ελ+ β(λ)
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β(λ) = λ2
da1
dλ

λ2
dak+1

dλ
= β(λ)

d

dλ
(λak),

where the first comes from εn, the second from ε0, and the third from ε−k, with n, k > 0.

So the beta function is determined entirely from a1. The ak>1 are also entirely deter-

mined by a1. In k-th order in perturbation theory, the leading pole goes like 1/εk.

Recall that we found for λφ4, in MS where we found to 1-loop

δm =
λm2

16π2

1

ε
, δλ =

3λ2

16π2

1

ε
, δZ = 0.

So we find a1(λ) = +3λ/16π2 to one loop. This gives

β(λ) =
3λ2

16π2
+O(λ3).

• Let’s now discuss, similarly with the dim reg discussion of last time,

γφ(λ, ε) = 1
2

d

d lnµ
lnZφ

where

Zφ = 1 +
∑
k

Z−kφ (λ)ε−k.

So

γφ(λ, ε) = 1
2β(λ, ε)

d

dλ
lnZφ.

Using β(λ, ε) = −ελ+ β(λ), we get

γφ = − 1
2λ

d

dλ
Z

(1)
φ .

We similarly have m2
B = (m2 + δm2)Z−1φ ≡ Zmm2 and

γm(λ) = 1
2

d lnm2

d lnµ
= − 1

2

d lnZm
d lnµ

= − 1
2β
d lnZm
dλ

= 1
2λ
dZ

(1)
m

dλ

where Z
(1)
m means the coefficient of 1/ε. In all these cases, only the coefficient of 1/ε

matters.

In particular, for λφ4 we have

γm(λ) = 1
2λ
dZ

(1)
m

dλ
= 1

2

λ

16π2
− 5

12

λ2

6(16π2)2
+ . . .
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where Z
(1)
m means the coefficient of 1/ε and . . . are higher orders in perturbation theory,

and

γφ = − 1
2λ

d

dλ
Z

(1)
φ =

1

12

λ2

(16π2)2
+ . . .

For any gauge invariant field φ, we always have γφ ≥ 0, where γφ = 0 iff it is a free

field. This follows from the spectral decomposition result that Z ≤ 1.

The anomalous dimension γφ is an additional quantum correction to the classical

scaling dimension of the field: ∆(O) = ∆cl(O) + γO, e.g. here we find to 1-loop that

∆(φ) = 1 + 1
12

λ2

(16π2)2 .

• Let’s discuss the RG equation in another way – the “Wilsonian” RG picture. Suppose

that we break the path integral
∫

[dφ(k)] up into the “fast” modes, with |kE | > M , and

the “slow” ones with |kE | < M , for some cutoff M . First do the integral over the fast

modes, to get a low-energy effective theory lagrangian for the slow modes. This effective

lagrangian has an effective coupling λ. Physics at the end of the day doesn’t care about

where we put M , but the effective coupling λ must vary with M to compensate for the

fact that ultimately physics is M independent. Likewise, if we change M → M ′, we need

to rescale φ′ = Z
−1/2
φ (M ′,M)φ. The condition that physics is independent of M is(

∂

∂ logM
+ β(λ)

∂

∂λ
+ nγ(λ)

)
Γ̃
(n)
R (p1, . . . pn,M, λ) = 0,

with

β =
dλ

d logM
γ = 1

2

d lnZφ
d lnM

,

this is an alternative, equivalent interpretation of the same RG equations seen before.

• Integrating the 1-loop beta function that we found for λφ4 theory gives

λ = λ0

(
1− 3

16π3
λ0 ln(µ/µ0)

)−1
.

Or we can write the effective λ(p) = λ(1− (3λ/16π2) log(p/M))−1.

• All physical parameters, masses couplings etc satisfy the RG eqn:

DP ≡
(

∂

∂ lnµ
+ β(λ)

∂

∂λ
+ γm

∂

∂ lnm

)
P (λ,m, µ) = 0.

• Note: β > 0 means the coupling is small in the IR, and large in the UV. Such

theories are “not asymptotically free” or are “IR free.” Most theories are like this, e.g. λφ4

(e.g. the Higgs coupling), QED, Yukawa interactions.
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• QED: one loop beta function, β(e) = e3/12π2, leads to αeff (µ)−1 = α−10 −
1
6π log(µ/µ0). Again, positive beta function. Discuss the interpretation. Picture for QED

of vacuum polarization, screening the bare charge.

4d theories without non-abelian gauge fields all have β > 0. They then need a cutoff

to define them in the UV, and tend to flow to free theories in the IR.

• QCD has β < 0: the coupling is small in the UV, and large in the IR. Such

theories are “asymptotically free;” only non-Abelian gauge theories, like QCD, are like

that. Means vacuum anti-screens charges. QCD: one loop beta function β(g) = −Cg3/2,

leads to g−2(µ) = g−20 + C log(µ/µ0).

• Pictures of RG flows. Briefly outline GUT idea and unification of the running

couplings.
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