3/2/11 Lecture 16 outline

• Last time:

$$
\tilde{\Gamma}_B^{(n)}(p_1,\ldots p_n; \lambda_B, m_B, \epsilon) = Z_{\phi}^{-n/2} \tilde{\Gamma}_R^{(n)}(p_1,\ldots p_n; \lambda_R, m_R, \mu, \epsilon).
$$

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormalization point μ while he LHS does not. This leads to what is known as the renormalization group equations, which state how the renormalized quantities must vary with μ . Take $d/d\ln\mu$ of both sides, and use $d\Gamma_B/d\mu = 0$ gives

$$
\left(\frac{\partial}{\partial \ln \mu} + \beta(\lambda_R) \frac{\partial}{\partial \lambda_R} + \gamma_m \frac{\partial}{\partial \ln m_R} - n\gamma \right) \tilde{\Gamma}_R^{(n)}(p_1, \dots p_n; \lambda_R, m_R, \mu) = 0
$$

with

$$
\beta(\lambda) \equiv \frac{d}{d \ln \mu} \lambda_R
$$

$$
\gamma = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

$$
\gamma_m = \frac{d \ln m_R}{d \ln \mu}.
$$

E.g. for $\lambda \phi^4$, recall $\mathcal{L}_B = \mathcal{L}_R + \mathcal{L}_{c.t.}$ and $\phi_B \equiv Z_{\phi}^{1/2}$ $\phi_{\phi}^{1/2} \phi_R$, so we had $\mathcal{L}_{c.t.} = ...$ $\delta \lambda \mu^{\epsilon} \phi^4 / 4!$ where $\delta \lambda \mu^{\epsilon} \equiv \lambda_B Z_{\phi}^2 - \lambda \mu^{\epsilon}$, which we'll rewrite as

$$
\lambda_B = \mu^{\epsilon} Z_{\phi}^{-2} (\lambda + \delta_{\lambda}) \equiv \mu^{\epsilon} \lambda Z_{\lambda}
$$

where

$$
Z_{\lambda} \equiv Z_{\phi}^{-2} (1 + \frac{\delta_{\lambda}}{\lambda}) \equiv 1 + \sum_{k>0} a_k(\lambda) \epsilon^{-k}.
$$

The bare parameter λ_B is independent of μ , whereas λ depends on μ , such that the above relation holds. Take $d/d \ln \mu$ of both sides,

$$
0=(\epsilon\lambda+\beta(\lambda,\epsilon))Z_{\lambda}+\beta(\lambda,\epsilon)\lambda \frac{dZ_{\lambda}}{d\lambda}.
$$

This equation must hold as a function of ϵ . Now $Z_{\lambda} = 1 + \epsilon^{negative}$, and $dZ_{\lambda}/d\lambda = \epsilon^{negative}$. On the other hand, $\beta(\lambda, \epsilon) = d\lambda_R/d\ln \mu$ is non-singular as $\epsilon \to 0$, so $\beta(\lambda, \epsilon) = \beta(\lambda)$ + $\sum_{n>0} \beta_n \epsilon^n$. Plugging back into the above equation then gives

$$
\beta(\lambda,\epsilon) = -\epsilon\lambda + \beta(\lambda)
$$

$$
\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda}
$$

$$
\lambda^2 \frac{da_{k+1}}{d\lambda} = \beta(\lambda) \frac{d}{d\lambda}(\lambda a_k),
$$

where the first comes from ϵ^n , the second from ϵ^0 , and the third from ϵ^{-k} , with $n, k > 0$.

So the beta function is determined entirely from a_1 . The $a_{k>1}$ are also entirely determined by a_1 . In k-th order in perturbation theory, the leading pole goes like $1/\epsilon^k$.

Recall that we found for $\lambda \phi^4$, in MS where we found to 1-loop

$$
\delta_m = \frac{\lambda m^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_\lambda = \frac{3\lambda^2}{16\pi^2} \frac{1}{\epsilon}, \qquad \delta_Z = 0.
$$

So we find $a_1(\lambda) = +3\lambda/16\pi^2$ to one loop. This gives

$$
\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3).
$$

• Let's now discuss, similarly with the dim reg discussion of last time,

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

where

$$
Z_{\phi} = 1 + \sum_{k} Z_{\phi}^{-k}(\lambda) \epsilon^{-k}.
$$

So

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2}\beta(\lambda,\epsilon)\frac{d}{d\lambda}\ln Z_{\phi}.
$$

Using $\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)$, we get

$$
\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)}.
$$

We similarly have $m_B^2 = (m^2 + \delta_{m^2})Z_{\phi}^{-1} \equiv Z_m m^2$ and

$$
\gamma_m(\lambda) = \frac{1}{2} \frac{d \ln m^2}{d \ln \mu} = -\frac{1}{2} \frac{d \ln Z_m}{d \ln \mu} = -\frac{1}{2} \beta \frac{d \ln Z_m}{d \lambda} = \frac{1}{2} \lambda \frac{d Z_m^{(1)}}{d \lambda}
$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$. In all these cases, only the coefficient of $1/\epsilon$ matters.

In particular, for $\lambda \phi^4$ we have

$$
\gamma_m(\lambda) = \frac{1}{2}\lambda \frac{dZ_m^{(1)}}{d\lambda} = \frac{1}{2}\frac{\lambda}{16\pi^2} - \frac{5}{12}\frac{\lambda^2}{6(16\pi^2)^2} + \dots
$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$ and ... are higher orders in perturbation theory, and

$$
\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)} = \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots
$$

For any gauge invariant field ϕ , we always have $\gamma_{\phi} \geq 0$, where $\gamma_{\phi} = 0$ iff it is a free field. This follows from the spectral decomposition result that $Z \leq 1$.

The anomalous dimension γ_{ϕ} is an additional quantum correction to the classical scaling dimension of the field: $\Delta(\mathcal{O}) = \Delta_{cl}(\mathcal{O}) + \gamma_{\mathcal{O}}$, e.g. here we find to 1-loop that $\Delta(\phi) = 1 + \frac{1}{12}$ λ^2 $\frac{\lambda^2}{(16\pi^2)^2}.$

• Let's discuss the RG equation in another way – the "Wilsonian" RG picture. Suppose that we break the path integral $\int [d\phi(k)]$ up into the "fast" modes, with $|k_E| > M$, and the "slow" ones with $|k_E| < M$, for some cutoff M. First do the integral over the fast modes, to get a low-energy effective theory lagrangian for the slow modes. This effective lagrangian has an effective coupling λ . Physics at the end of the day doesn't care about where we put M, but the effective coupling λ must vary with M to compensate for the fact that ultimately physics is M independent. Likewise, if we change $M \to M'$, we need to rescale $\phi' = Z_{\phi}^{-1/2}$ $\phi_{\phi}^{-1/2}(M',M)\phi$. The condition that physics is independent of M is

$$
\left(\frac{\partial}{\partial \log M} + \beta(\lambda)\frac{\partial}{\partial \lambda} + n\gamma(\lambda)\right)\widetilde{\Gamma}_R^{(n)}(p_1,\ldots p_n, M, \lambda) = 0,
$$

with

$$
\beta = \frac{d\lambda}{d\log M} \qquad \gamma = \frac{1}{2} \frac{d\ln Z_{\phi}}{d\ln M},
$$

this is an alternative, equivalent interpretation of the same RG equations seen before.

• Integrating the 1-loop beta function that we found for $\lambda \phi^4$ theory gives

$$
\lambda = \lambda_0 \left(1 - \frac{3}{16\pi^3} \lambda_0 \ln(\mu/\mu_0) \right)^{-1}.
$$

Or we can write the effective $\lambda(p) = \lambda(1 - (3\lambda/16\pi^2) \log(p/M))^{-1}$.

• All physical parameters, masses couplings etc satisfy the RG eqn:

$$
\mathcal{D}P \equiv \left(\frac{\partial}{\partial \ln \mu} + \beta(\lambda)\frac{\partial}{\partial \lambda} + \gamma_m \frac{\partial}{\partial \ln m}\right) P(\lambda, m, \mu) = 0.
$$

• Note: $\beta > 0$ means the coupling is small in the IR, and large in the UV. Such theories are "not asymptotically free" or are "IR free." Most theories are like this, e.g. $\lambda \phi^4$ (e.g. the Higgs coupling), QED, Yukawa interactions.

• QED: one loop beta function, $\beta(e) = e^3/12\pi^2$, leads to $\alpha_{eff}(\mu)^{-1} = \alpha_0^{-1}$ 1 $\frac{1}{6\pi}$ log(μ/μ_0). Again, positive beta function. Discuss the interpretation. Picture for QED of vacuum polarization, screening the bare charge.

4d theories without non-abelian gauge fields all have $\beta > 0$. They then need a cutoff to define them in the UV, and tend to flow to free theories in the IR.

• QCD has β < 0: the coupling is small in the UV, and large in the IR. Such theories are "asymptotically free;" only non-Abelian gauge theories, like QCD, are like that. Means vacuum anti-screens charges. QCD: one loop beta function $\beta(g) = -Cg^3/2$, leads to $g^{-2}(\mu) = g_0^{-2} + C \log(\mu/\mu_0)$.

• Pictures of RG flows. Briefly outline GUT idea and unification of the running couplings.