
2/28/11 Lecture 15 outline

• Appetizer: consider L = 1
2∂φ

2− λ
4!φ

4, this class’ favorite interacting theory, but now

without the mass term. This theory is classically scale invariant, since there is no classical

mass scale, so we might imagine that the theory is invariant under rescaling xµ → Cxµ for

general constant parameter C. But this classical scale invariance is broken at the quantum

level! The quantum theory (i.e. loops) requires renormalization, which introduces a scale,

e.g. the scale µ in dim reg, where λold = λnewµ
4−D = λnewµ

−ε. On the other hand, this

scale is sort-of fake. The renormalization group (RG) is how we account for that.

•Let’s consider more generally

Γ̃
(n)
B (p1, . . . pn;λB ,mB , ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn;λR,mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ.

Take d/d lnµ of both sides, and use dΓB/dµ = 0. This gives(
∂

∂ lnµ
+ β(λR)

∂

∂λR
+ γmmR

∂

∂ lnmR
− nγ

)
Γ̃
(n)
R (p1, . . . pn;λR,mR, µ) = 0

Here

β(λ) ≡ d

d lnµ
λR

γ = 1
2

d

d lnµ
lnZφ

γm =
d lnmR

d lnµ
.

This is the RG equation. Various variants, depending on subtraction procedure (scheme).

For mass dependent scheme, this gives the original Gell-Mann Low equations, where β

and γ depend on the physical mass. The Callan-Symanzik equation replaces ∂/∂ lnµ with

∂/∂ lnm, giving the change as the physical mass is varied. It’s often better to use a mass-

independent scheme, like MS (or MS, where we had introduced the scale M in replacing,

via appropriate counterterms, ( 2
ε − γ + log(4π/m2)→ log(M2/m2)), where m appears as

just another coupling constant. In any case, the RG equation can be integrated, to relate

the renormalized Greens functions at different scales µ and µ′.
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• Understand what β and γ mean: the bare quantities are some function of the

renormalized ones and epsilon. E.g. for λφ4, recall LB = LR +Lc.t. and φB ≡ Z1/2
φ φR, so

we had Lc.t. = . . .− δλµεφ4/4! where δλµε ≡ λBZ2
φ − λµε, which we’ll rewrite as

λB = µεZ−2φ (λ+ δλ) ≡ µελZλ

where

Zλ ≡ Z−2φ (1 +
δλ
λ

) ≡ 1 +
∑
k>0

ak(λ)ε−k.

The bare parameter λB is independent of µ, whereas λ depends on µ, such that the above

relation holds. Take d/d lnµ of both sides,

0 = (ελ+ β(λ, ε))Zλ + β(λ, ε)λ
dZλ
dλ

.

This equation must hold as a function of ε. Now Zλ = 1+εnegative, and dZλ/dλ = εnegative.

On the other hand, β(λ, ε) = dλR/d lnµ is non-singular as ε → 0, so β(λ, ε) = β(λ) +∑
n>0 βnε

n. Plugging back into the above equation then gives

β(λ, ε) = −ελ+ β(λ)

β(λ) = λ2
da1
dλ

λ2
dak+1

dλ
= β(λ)

d

dλ
(λak),

where the first comes from εn, the second from ε0, and the third from ε−k, with n, k > 0.

So the beta function is determined entirely from a1. The ak>1 are also entirely deter-

mined by a1. In k-th order in perturbation theory, the leading pole goes like 1/εk.

Recall that we found for λφ4, in MS where we found to 1-loop

δm =
λm2

16π2

1

ε
, δλ =

3λ2

16π2

1

ε
, δZ = 0.

So we find a1(λ) = +3λ/16π2 to one loop. This gives

β(λ) =
3λ2

16π2
+O(λ3).
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