$2/23/11$ Lecture 14 outline

• Last time we wrote down the LSZ formula. There was some interest in seeing more details, so let's briefly sketch the idea.

Let $|k\rangle$ be the physical one-particle momentum plane wave state of the full interacting theory, normalized to $\langle k'|k\rangle = (2\pi)^3 2\omega_k \delta^{(3)}(\vec{k}' - \vec{k})$, and $\phi(x)$ the Heisenberg picture field. As discussed last time, the FT of $\langle \Omega | T\phi(x)\phi(0) | \Omega \rangle \sim iZ/(p^2 - m^2 + i\epsilon)$ near $p^2 = m^2$, so

$$
\langle k|\phi(x)|\Omega\rangle = \langle k|e^{iP\cdot x}\phi(0)e^{-iP\cdot x}|\Omega\rangle = e^{ik\cdot x}\langle k|\phi(0)|\Omega\rangle \equiv e^{ik\cdot x}Z_{\phi}^{1/2}.
$$

We scatter wave packets, with some profile $F(\vec{k})$, with F.T. $f(x) = \int \frac{d^3k}{(2\pi)^{3}2}$ $\frac{d^3k}{(2\pi)^3 2\omega_k} F(\vec{k}) e^{-ik\cdot x},$ where we define $k_0 = \sqrt{\vec{k}^2 + \mu^2}$, so $f(x)$ solves the KG equation. Now define

$$
\phi^f(t) = iZ_{\phi}^{-1/2} \int d^3\vec{x}(\phi(\vec{x},t)\partial_0 f(\vec{x},t) - f(\vec{x},t)\partial_0 \phi(\vec{x},t)).
$$

This depends only on t, and we'll be interested in it at $t \to \pm \infty$, where it makes asymptotic single-particle in and out states: $\langle k|\phi^f(t)|\Omega\rangle = F(\vec{k})$ (the ∂_0 's in $\phi^f(t)$ give a needed $2\omega_k$ to cancel that in $d^3k/(2\pi)^3 2\omega_k$, and $\langle n|\phi^f(t)|\Omega\rangle = \frac{\omega_{p_n} + p_n^0}{2\omega_{p_n}} F(\vec{p}_n) e^{-i(\omega_{p_n} - p_n^0)t} \langle n|\phi(0)|\Omega\rangle$, where $\omega_{p_n} \equiv \sqrt{\vec{p}_n^2 + \mu^2}$, which has $\omega_{p_n} < p_n^0$ for any multiparticle state. So for **any** state ψ , $\lim_{t\to\pm\infty}\langle\psi|\phi^f(t)|\Omega\rangle = \langle\psi|f\rangle + 0$, where $|f\rangle \equiv \int \frac{d^3\vec{k}}{(2\pi)^3}$ $\frac{d^3 \vec{k}}{(2\pi)^3 2\omega_k} F(\vec{k}) |\vec{k}\rangle$, and the multiparticle states contributions sum to zero using the Riemann-Lebesgue lemma. Moreover, you can easily verify that (taking $f(|x| \to \infty) \to 0$)

$$
iZ_{\phi}^{-1/2} \int d^4x f(x) (\partial^2 + \mu^2) \phi(x) = \int dt \partial_0 \phi^f(t) = \left(\lim_{t \to -\infty} -\lim_{t \to \infty} \right) \phi^f(t).
$$

This will be just what we wanted, to get our incoming and outgoing scattering states.

Make separated in states: $|f_n\rangle = \prod_{n} \phi^{f_n}(t_n)|\Omega\rangle$, and out states $\langle f_m| = \langle \Omega | \prod_{n} (\phi^{f_m})^{\dagger} (t_m),$ with $t_n \to -\infty$ and $t_m \to +\infty$. With some work, it can be shown that the $|_{-\infty}^{\infty}$ differences work out right so that

$$
\langle f_m | S - 1 | f_n \rangle = Z_{\phi}^{-(n+m)/2} \int \prod_n d^4 x_n f_n(x_n) \prod_m d^4 x_m f_m(x_m)^* \prod_r i(\partial_r^2 + m_r^2) G(x_n, x_m).
$$

Take $f_i(x) \to e^{-ik_ix_i}$ at the end. Thus get that the S-matrix element for m incoming particles and n outgoing ones is given by

$$
\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z_{\phi}^{-(n+m)/2} \lim_{o.s} \prod_{i=1}^n (p_i^2 - m_i^2) \prod_{j=1}^m (k_j^2 - m_j^2) \tilde{G}^{n+m}(-p_i, k_i).
$$

Again, \tilde{G}^{n+m} is the full $n+m$ point Green's function, including disconnected diagrams etc. The limit is where we take the external particles on shell. In this limit, the $p_i^2 - m_i^2$ and $k_j^2 - m_j^2$ prefactors all go to zero. These zeros kill everything on the RHS except for the connected contributions to \tilde{G} . Accounting for the fact that we amputate the external propagators, which go like $iZ_i(p_i^2 - m_i^2)^{-1}$, the above becomes

$$
\langle \mathbf{p_1} \dots \mathbf{p_n} | S | \mathbf{k_1} \dots \mathbf{k_m} \rangle = Z^{(n+m)/2} \tilde{G}^{n+m}_{amp,conn,B}(-p_i, k_i) = \tilde{G}^{n+m}_{amp,conn,B}(-p_i, k_j)
$$

Good: the physical S-matrix elements are computed from the renormalized Greens functions, which we take to be finite in our renormalization procedure.

• Write

$$
-i\tilde{\Delta}(p^2) = \frac{i}{p^2 - m^2 - \Pi'(p^2) + i\epsilon} = \frac{iZ}{p^2 - m^2 + i\epsilon} + \int_{\sim 4m^2}^{\infty} \frac{dM^2}{2\pi} \rho(M^2) \frac{i}{p^2 - M^2 + i\epsilon}.
$$

So, using $\frac{1}{x\pm i\epsilon} = P(1/x) \mp i\pi\delta(x)$, argue that $\pi \rho(s) = 2Im\tilde{\Delta}(s)$ for $s \geq 4m^2$. (The minus sign in the definition of $\tilde{\Delta}$ above is related to the special definition of $\tilde{\Gamma}^{(n)}$ for $n = 2$ and $\widetilde{\Delta} \sim 1/\widetilde{\Gamma}^{(2)}$.)

Analyticity properties. E.g. $2 \rightarrow 2$ scattering. $\mathcal{M}(s) = \mathcal{M}(s^*)^*$. The real part $Re\mathcal{M}$ is continuous across the real axis, whereas the Im part picks up a minus sign. So the discontinunity $Disc\mathcal{M}(s) = 2iIm\mathcal{M}(s + i\epsilon)$. E.g. $\frac{1}{x \pm i\epsilon} = P(1/x) \mp i\pi\delta(x)$ shows that the discontinunity of $\frac{1}{p^2 - m^2 + i\epsilon}$ is $-2\pi i \delta(p^2 - m^2)$.

• Optical theorem. The S-matrix $S = U(t_f = \infty, t_i = -\infty)$ is unitary, $S^{\dagger}S = 1$. Write $S = 1 + iT$, then get $2Im(T) \equiv -i(T - T^{\dagger}) = T^{\dagger}T$. Thus

$$
-i(2\pi)^4 \delta^4(p_f - p_i)(\mathcal{M}_{fi} - \mathcal{M}_{if}^*) = \sum_m \prod_j \int \frac{d^3 \vec{k}_j}{(2\pi)^3 2E_j} \mathcal{M}_{fm} \mathcal{M}_{im}^*(2\pi)^4 \delta^4(p_f - p_m)(2\pi)^4 \delta^4(p_f - p_i).
$$

Take $f = i$, get

$$
2Im\mathcal{M}_{ii} = \sum_{m} \int d\Pi_{m} |\mathcal{M}_{im}|^{2},
$$

where $d\Pi_m$ is the density of states for the process $i \to m$. This is the optical theorem. It relates the imaginary part of the forward scattering amplitude to the total cross section, e.g.

Im
$$
\mathcal{M}(k_1, k_2 \to k_1, k_2) = 2E_{cm}p_{cm}\sigma_{tot}(k_1, k_2 \to anything).
$$

Recall that the imaginary part of amplitudes is discontinuous across the cut starting at $s = 4m^2$. So we can there relate

$$
Disc\mathcal{M}(s) = 2iIm\mathcal{M}(s) \sim \int d\Pi \left| \mathcal{M}_{cih} \right|^2 \sim \sigma_{tot}
$$

where *cih* means cut in half.

Consider e.g. the 1-loop contribution to the 4-point amplitude in $\lambda \phi^4$, in the s channel

$$
\mathcal{M}^{(1)} = \frac{1}{2}\lambda^2 \int \frac{d^4k_E}{(2\pi)^4} \frac{1}{(\frac{1}{2}p+k)^2 - m^2 + i\epsilon} \frac{1}{(\frac{1}{2}p-k)^2 - m^2 + i\epsilon},
$$

where $p = p_1 + p_2$. Recall that we evaluated this as (with $s = p^2$)

$$
\frac{\lambda^2}{32\pi^2} \left(\frac{2}{\epsilon} - \gamma + \log \frac{4\pi\mu^2}{m^2} + A(s), \right)
$$

where

$$
A(s) = 2 - \sqrt{1 - 4m^2/s} \log \left(\frac{\sqrt{1 - 4m^2/s} + 1}{\sqrt{1 - 4m^2/s} - 1} \right).
$$

The $1/\epsilon$ term (together with some constants, depending on our scheme) is cancelled by a counterterm diagram. The function $A(s)$ remains. The threshold is where $s = 4m^2$. Below threshold, the amplitude is purely real. Above threshold, there is a discontinuous imaginary part, with

$$
Disc\mathcal{M}(s) = 2iIm\mathcal{M}(s) \sim \int d\Pi \left| \mathcal{M}_{cih} \right|^2 \sim \sigma_{tot}
$$

where *cih* means cut in half. The tree-level scattering amplitude is thus related to the imaginary part of the one-loop amplitude.

• For unstable particles, we can again write the full propagator as $i(p^2 - m^2 - \Pi'(p^2))^{-1}$, and the decay width again shows up via an analog of the optical theorem for 1-particle to 1-particle scattering. This gives the decay width, which appears in the Breit-Wigner formula $\sigma \sim |p^2 - m^2 + i\Gamma|^{-2}$, as $\Gamma = -m^{-1}ZIm\Pi'(p^2) = \frac{1}{2m}\sum_f \int d\Pi_f |\mathcal{M}(p \to f)|^2$.