
2/16/11 Lecture 13 outline

• Recall last time: renormalized and bare Greens functions. Recall that ΦB ≡ Z1/2
φ φ,

and the definition of the 1PI Green’s functions Γ̃(n), and in particular that they have all

n external propagators amputated. It then follows that

Γ̃
(n)
B (p1, . . . pn;λB ,mB , ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn;λR,mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ. Rewrite above as

Z
n/2
φ Γ̃

(n)
B (p1, . . . pn;λB ,mB , ε) = Γ̃

(n)
R (p1, . . . pn;λR,mR, µ, ε).

Now the RHS is finite, so the LHS must be too. So we can take ε→ 0 without a problem.

• Before getting into the renormalization group, let’s take a little detour. Recall that∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

i

p2 −m2 −Π′(p2) + iε
.

Here |Ω〉 is the full, interacting vacuum and φ are the full (Heisenberg picture) operators.

Now insert a complete set of states,

1 = |Ω〉〈Ω|+
∑
λ

∫
d3p

(2π)2
1

2Ep(λ)
|λp〉〈λp|

where λ are all eigenstates of the full H, and λp is a boosted version, to give an eigenstate

of ~P , with spatial momentum ~p. Now use 〈Ω|φ(x)|λp〉 = 〈Ω|φ(0)|λ0〉e−ipx (where p0 =

Ep ≡
√
|~p|2 +m2

λ) and replace
∫

d3~p
(2π)32Ep

→
∫

d4p
(2π)4

i
p2−m2

λ
+iε

to get

〈Ωφ(x)φ(0)|Ω〉 =
∑
λ

∫
d4p

(2π)4
i

p2 −m2
λ + iε

e−ipx|〈Ω|φ(0)|λ0〉|2.

So ∫
d4xeipx〈Ω|Tφ(x)φ(0)|Ω〉 =

∫ ∞
0

dM2

2π
ρ(M2)

i

p2 −M2 + iε
,

where

ρ(M2) =
∑
λ

2πδ(M2 −m2
λ)|〈Ω|φ(0)|λ〉|2 > 0
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is the Kallen-Lehmann spectral density. Find ρ(M2) = 2πδ(M2 −m2)Z for M2 � 4m2.

For M2 slightly below 4m2 there are new delta functions, at the bound states. Starting at

4m2, ρ(M2) is some positive function. This implies that

i

p2 −m2 −Π′(p2) + iε
=

iZ

p2 −m2 + iε
+

∫ ∞
∼4m2

dM2

2π
ρ(M2)

i

p2 −M2 + iε
.

The LHS has a simple pole, with residue iZ, at p2 = m2. Here Z = |〈λ0|φ(0)|Ω〉|2 is the

probability for φ(0) to create the lowest energy 1-particle state from the vacuum. Then

there can be a few more simple poles, for p2 slightly below 4m2.

Starting at p2 = 4m2, there is a branch cut, corresponding to producing two more more

free particles. Note M(s) =M(s∗)∗ implies that the real part of M is continuous across

the cut, but the imaginary part can be discontinuous: ImM(s + iε) = −ImM(s − iε).
We’ll return to this shortly.

The above equality, back in position space and taking ∂/∂t, leads to the equal time

commutators, [φ(~x, t), φ̇(~y, t)] = iδ(3)(~x− ~y), matching the coefficient of the delta function

on the two sides of the resulting equation gives

1 = Z +

∫ ∞
∼4m2

dM2

2π
ρ(M2) ≥ Z.

Implies that 0 ≤ Z ≤ 1, with Z = 1 iff the theory is a free field theory. Intuitively

reasonable, since Z essentially gives the probability of φ to create a 1-particle asymptotic

in state, given that it can also create other things. Recall what we found before,

δ
(2)
Z = − λ2

12(16π2)2
1

ε
,

so negative (for ε > 0).

• Recall LSZ (Lehmann, Symanzik, Zimmermann ’55) from last quarter, now noting

that there are Z factors. Let’s just state the result: the S-matrix element for m incoming

particles and n outgoing ones is given by

〈p1 . . .pn|S|k1 . . .km〉 = lim
o.s

n∏
i=1

(p2i −m2
i )Z
−1/2
i

m∏
j=1

(k2j −m2
j )Z
−1/2
j G̃n+m(−pi, ki).

Here G̃n+m is the full n+m point Green’s function, including disconnected diagrams etc.

The limit is where we take the external particles on shell. In this limit, the p2i −m2
i and

k2j −m2
j prefactors all go to zero. These zeros kill everything on the RHS except for the
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connected contributions to G̃. Accounting for the fact that we amputate the external

propagators, which go like iZi(p
2
i −m2

i )
−1, the above becomes

〈p1 . . .pn|S|k1 . . .km〉 = Z(n+m)/2G̃n+mamp,conn,B(−pi, ki) = G̃n+mamp,conn,R(−pi, kj)

Good: the physical S-matrix elements are computed from the renormalized Greens func-

tions, which we take to be finite in our renormalization procedure.
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