
2/14/11 ♥ Lecture 12 outline

• Recall last time we found

Π′(p2) = −
λm2

32π2

(
2

ǫ
− log

m2

4πµ2
+ 1 − γ

)
+ . . . + δm − p2δZ

where . . . are higher loop and λold = λnewµ4−D with λnew dimensionless. Also,

Γ̃(4) = −λh̄−1 +
λ2

32π2

(
3
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ǫ
− 3γ + 3 log

4πµ2

m2
+ A1(s) + A1(t) + A1(u)

)
+ O − δλ + . . .

with
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√
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4m2

s
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√
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1 − 4m2

s − 1



 .

Recall LB = Lphys + Lc.t., with φB ≡ Z
1/2
φ φ, and

Lc.t. = 1
2(Zφ − 1)∂µφ∂µφ − 1

2(m2
BZφ − m2)φ2 − (λBZ2

φ − λµǫ)
1

4!
φ4.

Define δZ ≡ Zφ − 1, δm = m2
BZφ − m2, δλµǫ = λBZ2

φ − λµǫ. There are extra diagram

contributions for these corrections: there is a line (like the propagator) with an insertion

of the counterterm, which gives a factor of i(p2δZ − δm). There is a new vertex with a

factor of −iδλ.

Among other things, the counter terms must be chosen to cancel the divergences, so

δm =
λm2

16π2

1

ǫ
+ finite + O(λ3).

δλ = 3
λ2

16π2

1

ǫ
+ finite + O(λ4).

To one loop, δZ = 0+(finite), because Π′(p2) is independent of p2.

What to do about the finite parts is a choice that we can make, called our renormal-

ization prescription. We have to define what we’re calling the physical mass and coupling.

The physics will be independent of our particular choice, and different choices have differ-

ent calculational advantages or disadvantages. We’ll discuss three choices: (i) on shell; (ii)

minimal subtraction (MS); (iii) MS.

• On shell renormalization scheme. Here, we define what we mean by the mass to

be the pole of the full propagator (sum of all connected diagrams), D(p) = i/Γ̃(2), and to

define the physical field so that the residue of the pole is i. This means

Π′(m2) = 0,
dΠ′

dp2
|p2=m2 = 0, Γ̃(4)|s=4m2 = −λ

1



where the last condition is our definition of physical λ. With this choice, we have

δm = +
λm2

32π2

(
2

ǫ
− log

m2

4πµ2
+ 1 − γ

)

to this order, and so, to this order they combine to give

Π′(p2) = 0.

We also have δZ = 0 and δλ is such that now

Γ̃(4) = −λ +
λ2

32π2

(
A1(s) + A1(t) + A1(u) − A1(4m2) − 2A1(0)

)
.

More generally, we can consider the “on shell” renormalization scheme, defined by

imposing

Π′(m2) = 0,
dΠ′

dp2
|p2=m2 = 0, Γ̃(4)|s=µ = −λ

Above we took µ = 4m2. We could also change the renormalization point µ.

• Now mention two other renormalization schemes, which have an advantage in actual

perturbative calculations in that they are mass independent (to be illustrated below).

In minimal subtraction (MS) we choose the counterterms to remove the 1/ǫ poles, and

nothing else. A variant is MS, where one replaces

Γ(2 − 1
2D)

(4π)D/2(m2)2−
1
2

D
=

1

(4π)2

(
2

ǫ
− γ + log(4π/m2)

)

with
1

16π2
log(M2/m2),

for some arbitrary mass parameter M . (The advantage is that it gets rid of annoying finite

constants like γ and other derivatives of the gamma function, which otherwise proliferate

at each higher loop order.) The apparent freedom to define things many different ways

always cancels out at the end of the day, when one relates to physical observables. Different

choices have different benefits along the way.

• Let’s consider λφ4 in MS. To one loop, we have

δm =
λm2

16π2

1

ǫ
, δλ =

3λ2

16π2

1

ǫ
, δZ = 0.

Now consider the propagator to two loops. Diagram 1 is a one-loop diagram with the

1-loop δλ counterterm at the vertex. Diagram 2 is a one-loop diagram with the 1-loop δm
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counterterm on the internal propagator. Diagram 3 is a two-loop diagram which looks like

a double-scoop of the 1-loop diagrams. Diagram 4 is a line which cuts through a circle (see

your HW). Diagram 5 has no loops, but an insertion of the 2-loop δm and δZ counter terms.

Let’s consider the pole terms in the diagrams. Diagram 1 requires no new computation:

we can obtain it from the previous 1-loop contribution to −iΠ′ by simply replacing there

λ → δλ. This gives

−iΠ′

diag 1 = i
λ2

(16π2)2
m2 3

2

(
2

ǫ2
−

1

ǫ
ln

m2

4πµ2
+

1

ǫ
−

γ

ǫ

)
+ O(ǫ0)

Diagram 2 has 2 propagators in the loop, with the 1-loop δm insertion, which gives

−iΠ′

diag 2 = i
λ2

(16π2)2
m2 1

2

(
2

ǫ2
−

1

ǫ
ln

m2

4πµ2
−

γ

ǫ

)
+ O(ǫ0)

Diagram 3 contributes

−iΠ′

diag 3 =
1

4
(−iλ)2µ2ǫ

∫
dDk

(2π)D

i

k2 − m2

∫
dDq

(2π)D

(
i

q2 − m2

)2

,

where q is the integral over the lower loop, which has two propagators. This gives

−i
λ2

(16π2)2
m2 1

2

(
2

ǫ2
−

2

ǫ
ln

m2

4πµ2
+

1

ǫ
−

2γ

ǫ

)
+ O(ǫ0)

Diagram 4 gives

i
λ2

(16π2)2

(
−

m2

ǫ2
+

1

ǫ

(
m2 ln

m2

4πµ2
+

1

12
p2 + (γ −

3

2
m2)

))

Diagram 5 are the two-loop counterterms, iδ
(2)
Z p2 − iδ

(2)
m . We should then take for the

2-loop contributions to the counterterms

δm(2) =
λ2

(16π2)2

(
2

ǫ2
−

1

2ǫ

)
m2,

δ
(2)
Z = −

λ2

12(16π2)2
1

ǫ
.

The terms involving lnm2/4πµ2 all cancel. This happens for all loops. MS is a mass

independent scheme, in that δλ, δZ, and δm/m2 are independent of m and µ.
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• Renormalized and bare Greens functions. Recall that ΦB ≡ Z
1/2
φ φ, and the defi-

nition of the 1PI Green’s functions Γ̃(n), and in particular that they have all n external

propagators amputated. It then follows that

Γ̃
(n)
B (p1, . . . pn; λB, mB, ǫ) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ǫ).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ. Rewrite above as

Z
n/2
φ Γ̃

(n)
B (p1, . . . pn; λB, mB, ǫ) = Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ǫ).

Now the RHS is finite, so the LHS must be too. So we can take ǫ → 0 without a problem.
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