
2/9/11 Lecture 11 outline

• Last time, using dim reg (D = 4 − ǫ) we found the 1-loop self energy

Π′(p2)(1) = − λm2

32π2

(
2

ǫ
− log

m2

4πµ2
+ 1 − γ

)

where the scale µ entered via λold = λnewµ4−D with λnew dimensionless. We also found

Γ̃(4) = −λh̄−1 + (−iλ)2(F (s) + F (t) + F (u)) + O(h̄),

where

F (sE) = −1
2

∫
d4kE

(2π)4

∫ 1

0

dx
1

(k2
E + m2 + x(1 − x)sE)2

.

Where sE = p2
E = −s. Evaluate the k integral our dimreg integrals. Expanding around

D = 4 − ǫ, gives

F (sE) = − 1

32π2

∫ 1

0

dx

(
2

ǫ
− γ + log(4π) − log(m2 + x(1 − x)sE)

)
.

So

Γ̃(4) = −λh̄−1 +
λ2

32π2

(
3
2

ǫ
− 3γ + 3 log

4πµ2

m2
+ A1(s) + A1(t) + A1(u)

)
+ O(h̄).

Here

A1(sE) = −
∫ 1

0

dx log(1 + x(1 − x)
sE

m2
)

The integral is evaluated using

∫ 1

0

dx log(1 +
4

a
x(1 − x)) = −2 +

√
1 + a log

(√
1 + a + 1√
1 + a − 1

)
a > 0.

So again there is a 1/ǫ term plus finite terms. (The finite terms have interesting behavior

at s, t, u = 4m2, which we’ll discuss soon as being related to intermediate channel particles

going on-shell.)

• Renormalization. The input to the functional integral is the “bare” lagrangian. It

is not physically observable, because we observe quantities like mass, charge, etc. with all

the quantum corrections included. Write the largrangian for the bare fields as:

LB = 1
2∂µφB∂µφB − 1

2m2
Bφ2

B − λB
1

4!
φ4

B .
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The bare field is related to the physical one by φB ≡ Z
1/2
φ φ. We can view this as

LB = Lphys + Lc.t.

where

Lphys = 1
2∂µφ∂µφ − 1

2m2φ2 − λµǫ 1

4!
φ4

involves the physical field, mass, coupling constant. What’s left are the counterterms:

Lc.t. = 1
2(Zφ − 1)∂µφ∂µφ − 1

2(m2
BZφ − m2)φ2 − (λBZ2

φ − λµǫ)
1

4!
φ4.

Define δZ ≡ Zφ − 1, δm = m2
BZφ − m2, δλµǫ = λBZ2

φ − λµǫ. There are extra diagram

contributions for these corrections.

There is a line (like the propagator) with an insertion of the counterterm, which gives

a factor of i(p2δZ − δm). There is a new vertex with a factor of −iδλ. These new diagrams

count as having one loop factor (one factor of h̄).

• Among other things, these corrections cancel the divergences. E.g. δm adds to

Π′, so pick the additive contribution to cancel the divergence in Π′; likewise, δλ adds to

effective λ obtained from Γ̃(4), so

δm =
λm2

16π2

1

ǫ
+ finite + O(λ3).

δλ = 3
λ2

16π2

1

ǫ
+ finite + O(λ4).

To one loop, δZ = 0+(finite), because Π′(p2) is independent of p2.

Amazing and non-trivial fact: we can cancel every divergence in λφ4, just by using δZ,

δm2, and δλ. Contrast this with λ6φ
6, where more and more counterterms are required,

e.g. the 1-loop contribution to Γ̃(8) requires a δλ8φ
8 counterterm, and it’s never ending.

Renormalizable vs non-renormalizable theories.

• Renormalizability: all divergences cancelled by counter terms of the same form as

original L. This would not be the case for e.g. λφ6. Even for λφ4, it is quite non-trivial.

For example, in doing 2 loops, there could have been some term from one loop diagrams,

with counter terms, leading to 1
ǫ ln p2, which could not be cancelled by a counterterm in our

lagrangian. Sometimes individual diagrams indeed behave like that. But the coefficients

of all such terms sum to zero.

• What to do about the finite parts is a choice that we can make, called our renormal-

ization prescription. We have to define what we’re calling the physical mass and coupling.
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The physics will be independent of our particular choice, and different choices have differ-

ent calculational advantages or disadvantages. We’ll discuss three choices: (i) on shell; (ii)

minimal subtraction (MS); (iii) MS.

• On shell renormalization scheme. Here, we define what we mean by the mass to

be the pole of the full propagator (sum of all connected diagrams), D(p) = i/Γ̃(2), and to

define the physical field so that the residue of the pole is i. This means

Π′(m2) = 0,
dΠ′

dp2
|p2=m2 = 0, Γ̃(4)|s=4m2 = −λ

(Continue next time.)
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