2/7/11 Lecture 10 outline
e Recall e.g. for \¢* we had the 1-loop self-energy
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where we define
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with n integer and I'm(a) > 0 and k in Minkowski space. As discussed last time
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where we used the solid angle Qp_; = 27P/2/T'(D/2), which is 272 for D = 4. Get
I(a) =i (167%(n — 1)(n — 2)a"_2)_1 for n > 3.

Special cases
i
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where ... are terms involving the regulator.

e Let’s illustrate another, extremely popular, choice of regulator: dimensional regular-
ization. Suppose that we had D instead of 4 dimensions. Compute by analytic continuation
in D. Then take D = 4 — ¢, and take ¢ — 0. By going slightly below 4 dimensions, we
improve the UV behavior (make the theory weaker in the UV, though stronger in the IR).

In particular, using the notation above,
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Again, Qp_, = 27P/2/T(D/2) is the surface area of a unit sphere SP~1. Let u? = m?y
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Now use (y+ 1)1 = [ dte "Wt and I'(z) = [~ dte='t*~! to get

mD—2

I=—_T(1-

(4m) D7 D).

1
2

1



This blows up for D = 4, because I'(1 — D) has a pole there. Recall I'(z) has a simple
pole at z = 0, and also at all negative integer values of z.

Recall that near x = 0,
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where v ~ 0.5772 is the Euler-Mascheroni constant. For x = —n, we can write a similar

expression, which also follows from the above and I'(z + 1) = zI'(z). This gives
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E.g. useI'(2—D/2)=(1—-D/2)I'(1 — D/2). Let D = 4 — ¢, then (dropping O(e),

r2-D/2) \ppo_, 1 (2 A )

Z log = —
(4m)D/2 (47)2 Bt 7

€ 4

D

Y

We can apply this to evaluate H(l)(pQ) = %)\I. One last thing: replace Aojg = Apewpt*™

where A, is dimensionless. Expanding around D = 4, we get
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The scale p introduced above, which we’ll see is immaterial at the end of the day, nicely
makes the units work inside the log. Summarizing, at one-loop there is a 1/e pole, which
we’ll deal with soon, and a finite piece.

e More useful integrals:
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e Now consider T (py, ps, ps, p4). There are three 1-loop diagrams, in the s, ¢, u
channels. Recall s = (p; + p2)?, t = (p1 +p3)?, u = (p1 +pa)?, s+t +u=4m? Get

T@ = A&7 4 (—iN2(F(s) + F(t) + F(u)) + O(h),

where
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The % is a symmetry factor. Evaluate using
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Aside: more generally, have

f[ H(Zr(a])>/ day . .. /lda:n Zx] ZH;TZ_ZIO‘

d*kp 1
PR =3 [ Gof [ do .
Ve =73 | Gyt Jy “TRE (- 2)ke o)
The quantity in the denominator is k% + (1 — z)2kg - pg + (1 — 2)p% + m? = (kg + (1 —
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Where s = p% = —s. Evaluate the k integral using the dimreg integrals above. Expanding

around D = 4 — ¢, this gives
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So the one-loop contribution to I'® is
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The integral is evaluated using
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Again, there is a 1/€ pole and a finite term.



