2/3/10 Lecture 9 outline

e Recall from last time: the 1-loop term in I'® for A¢*

' (p?) = %)\/ 4k 5 ! + more loops.
(2m)* k%, + m?
Let’s illustrate another, extremely popular, choice of regulator: dimensional regularization.
Suppose that we had D instead of 4 dimensions. Compute by analytic continuation in D.
Then take D = 4 — ¢, and take ¢ — 0. By going slightly below 4 dimensions, we improve
the UV behavior (make the theory weaker in the UV, though stronger in the IR).

So we write

I:/deE 1 _ QD—1/ uPdu
) @enPEL+m?2 (2m)P ), u? +m?’

Again, Qp_; = 27P/2/T(D/2) is the surface area of a unit sphere SP~1. Let u? = m?y

[ mP—2 /OO y(D—2)/2dy
~ 2D7D/21(D/2) J, y+1

Now use (y — 1)1 = [ dte t@=Y and T'(2) = [, dte "t*~! to get
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This blows up for D = 4, because I'(1 — $D) has a pole there. Recall I'(z) has a simple
pole at z = 0, and also at all negative integer values of z.

Recall that near x = 0,

lim I'(z) = é — v+ O(x),
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where v &~ 0.5772 is the Euler-Mascheroni constant. For x = —n, we can write a similar

expression, which also follows from the above and I'(z 4+ 1) = zI'(z). This gives
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E.g use I'2—-D/2)=(1—-D/2)I'(1 — D/2). Let D = 4 — ¢, then (dropping O(e),
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We can apply this to evaluate II(V) (p?). One last thing: replace Agg = Apewp®

Anew 18 dimensionless. Expanding around D = 4, we get
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e More useful integrals:
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, where

e Now consider f(4)(p1,p2,p3,p4). There are three 1-loop diagrams, in the s, t, u
channels. Recall s = (p; + p2)?, t = (p1 +p3)%, u = (p1 +pa)?, s+t +u=4m?. Get

TW = A&~ 4 (—iN2(F(s) + F(t) + F(u)) + O(h),

where
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The % is a symmetry factor. Evaluate using
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Aside: more generally, have
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Get
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The quantity in the denominator is k% + (1 — z)2kg - pr + (1 — 2)p% + m? = (kg + (1 —

z)pr)? +p%(1 — z)z + m?, so
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Where sp = p% = —s. Evaluate the k integral using the dimreg integrals above. Expanding

around D = 4 — ¢, this gives
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So the one-loop contribution to I'® is
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The integral is evaluated using
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