
1/27/10 Lecture 7 outline

• Last time: 1PI diagrams Γ̃(n)(p1, . . . pn). Recall 2-point function is a special case:

D(p) =
i

Γ̃(2)
=

i

p2 − m2 − Π′(p2)

where −iΠ′ is computed from the 1PI diagrams.

Mentioned generating function for the 1PI green’s functions:

Γ[φ] =

∞∑

n=1

1

n!

∫
d4x1 . . . d4xnΓ(n)(x1, . . . xn)φ(x1) . . . φ(xn).

This quantity is called the effective action. Find that

Γ[φ] =
1

h̄
(S[φ] + O(h̄)) .

E.g. in λφ4, Γ[φ] = h̄−1
∫

d4x[ 12φ(−∂2 − m2)φ − 1
4!λφ4]+(quantum corrections). The

quantum corrections are e.g. corrections to the mass from m2 → m2+h̄Π′(p2), a correction

to λ at order h̄, and higher powers of φ at order h̄−1(h̄L) for L ≥ 1.

Key fact: all connected diagrams are contained in the tree-level diagrams computed

using the propagators and vertices coming from the effective action Γ[φ].

To make this precise, we can connect Γ[φ] and W [J ]. Since both have h̄ inside,

introduce a new parameter a (to count loops, formally take a → 0):

eiW [J,a] ≡ N

∫
[dφ]ei(Γ[φ]+

∫
d4xJφ)/a.

Then LHS=exp(i(W [J ] + O(a))/a). Evaluate RHS by stationary phase:

δΓ[φ]

δφ(x)
= −J(x) for φ = φ(x),

which is some functional of J . So the RHS is

Nei(Γ[φ]+
∫

d4xJφ+O(
√

a)).

Conclude

W [J ] = Γ[φ] +

∫
d4xJ(x)φ(x).

This is a Legendre transform. Like F = E − TS in Stat Mech. There is also the inverse

transform:

Γ[φ] = W [J ] −

∫
d4xJ(x)φ(x).
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φ(x) can be interpreted as the average of φ(x) in the presence of the source; sometimes

called classical field:

φ(x) =
δW [J ]

δJ(x)
=

〈0|φ(x)|0〉J
〈0|0〉J

.

The functional derivatives of Γ[φ], upon setting φ = 0, give Γ(n)(x1, . . . xn). In particular,

δΓ[φc]

δφ(x)

∣∣
φ=0

= Γ(1)(x) = 0.

Recall from last time that we have L = 1
2∂µφ∂µφ − 1

2m2φ2 − 1
4!λφ4 + φJ , with the

source term J . The classical field EOM is

(∂µ∂µ + m2)φc = −
1

3!
λφ3

c + J(x).

As discussed last time, we can solve this in perturbation theory in λ, with only tree-level

diagrams. The generating functional for tree-level diagrams is Wc[J ] = S[φc] +
∫

d4xJφc.

The field φ satisfies the same equation, up to order h̄ corrections:

(∂µ∂µ + m2)φ = −
1

3!
λφ

3
+ J(x) + O(h̄).

So, at the classical level, φc = φ. But φ includes the quantum loop corrections.

• One-loop effective potential for λφ4. The effective potential is found from Γ[φ],

keeping the terms with no derivatives. Find

V1(φ) = i
∞∑

n=1

1

2n

∫
d4k

(2π)4

(
λ

1

k2 − m2 + iǫ

φ2

2

)n

= 1
2

∫
d4kE

(2π)4
ln

(
1 +

1
2
λφ2

k2
E + m2

)

(S. Coleman and E. Weinberg.) Symmetry factors: 1/n! not all the way cancelled, because

of Zn rotation symmetry, and reflection, gives 1/2n. At each vertex, can exchange external

lines, so 1/4! not all the way cancelled, leads to 1/2 for each vertex. Still have to explain

how to handle kE integral. We’ll come back to this later.

• Let’s consider the 1-loop term in Γ̃(2) for λφ4. Get

−iΠ′(p2) = (−iλ) 1
2

∫
d4k

(2π)4
i

k2 − m2
+ more loops.
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Now rotate to Euclidean space, d4k = id4kE ,

Π′(p2) = 1
2λ

∫
d4kE

(2π)4
1

k2
E + m2

+ more loops.

Recall expression ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. For

D = 4, get Ω3 = 2π2, so

Π′(p2) =
λm2

32π2

∫ Λ2/m2

0

udu

u + 1
=

λm2

32π2

(
Λ2

m2
− log(1 +

Λ2

m2
)

)
.

Here Λ is a UV momentum cutoff. Result is quadratically (and also log) divergent as

Λ → ∞. The subject of renormalization is the physical interpretation of these divergences.

The first thing to do is to regulate them, as we did above with a momentum cutoff. There

are other ways to regulate. How one regulates is physically irrelevant. The physics is in

the renormalization interpretation of the regulated results, and at the end of the day the

choice of regulator doesn’t matter.
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