1/15/10 Lecture 4 outline
* Reading: Srednicki ch. 9 and 10.

e Last time:
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where N is an irrelevant normalization factor (independent of J). Correspondingly, the

green’s functions are given by
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(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t
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depend specifically on the Green’s function.)

e Tllustrate the above formulae, and relation to Feynman diagrams, e.g. G(!), G2
and G® in \¢* theory. The functional integral accounts for all the Feynman diagrammer:
even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials. E.g.
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INlustrate Z[.J] computation of various G(™ for Vj,, = %(f)‘l theory, connecting to the
diagrams. (Srednicki discusses this for the V;,; = %(ﬁ?’ theory example.)

Consider, for example, the 4-point function G (1, xo, 23, 24) = (Td(21) . .. d(24))/(0]0)
n %gb‘l. So take 4-fuctional derivatives w.r.t. the source, at points xy...x4, i.e.
§/6J(x1)...5/6J(x4). The O(A?) term thus comes from expanding the exponent in (1) to

quadratic order (4 J’s), corresponding to the disconnected diagrams with two propagators.
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Each propagator ends on a point ;. This is like the 4-point function in the SHO home-
work. Now consider the O()) contribution, coming from expanding out the interaction
part of the exponent in (2) to O(A). There are now 4 extra §/§.J(y), for a total of 8, so
the contributing term comes from expanding the exponent in (1) to 4-th order, i.e. there
are 4 propagators. This gives the connected term, along with several disconnected terms.

Go through these terms and their combinatorics.



