3/10/10 Lecture 19 and 20 outline

• QED vs QED. In QED, we have gauge invariance $\psi \to e^{i\epsilon f(x)}\psi$, local $U(1)$ transformations. Generalize to local $SU(N_c)$ gauge transformations: $\psi \to U^f(x)\psi =$ $\exp(igT^a f_a(x))\psi$, where T^a are traceless, Hermitian $N_c \times N_c$ matrices $(a = 1 \dots N_c^2 - 1)$, and ψ is a N_c column vector. Gauge conserved color charge. Need covariant derivatives, $\partial_{\mu} \to D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T^{a}$, i.e. introduce gauge fields, "gluons". The T_{a} matrices do not commute, $[T^a, T^b] = i f_{abc} T^c$: the group is "non-Abelian." (They are normalized b $\text{Tr} T^a T^b = \frac{1}{2}$ $\frac{1}{2}\delta^{ab}$, e.g. for $SU(2)$, $T^a = \sigma^a$, the Pauli matrices.) The effect of this is that the A^a_μ kinetic terms are more complicated. The physics of this is that the gluons carry color charge (unlike the photon, which carries no electric charge).

Gauge transformation: $D_{\mu}\psi \to D_{\mu}^f U^f \psi = U^f D_{\mu}\psi$, i.e. $D_{\mu} \to U D_{\mu} U^{-1}$, i.e. $A_{\mu}^f =$ $U A^f_{\mu} U^{-1} - ig^{-1} (\partial_{\mu} U) U^{-1}.$

Field strength: $[D_\mu, D_\nu] = -igF^{\mu\nu}$, i.e. $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu - ig[A^\mu, A^\nu]$, i.e. $F_{\mu\nu}^a =$ $\partial_{\mu}A^{a}_{\nu}-\partial_{\nu}A^{a}_{\mu}+gf^{abc}A^{b}_{\mu}A^{c}_{\nu}.$

Lagrangian

$$
\mathcal{L}_{gaugekinetic} = -\frac{1}{2} \text{Tr} F_{\mu\nu} F^{\mu\nu} = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a}, \qquad \mathcal{L}_{ferm} = \bar{\psi} (i \rlap{\,/}D - m) \psi.
$$

Some parts are similar to QED, e.g. the gauge field propagator is $iD_{\mu\nu}^{ab} = \frac{-i\delta^{ab}}{k^2 + i\epsilon}(g_{\mu\nu} (\xi - 1)k^{\mu}k^{\nu}/k^2$). Some differences from QED: since gluons are charged, get 3 and 4 gluon diagrams, as seen from expanding $\mathcal{L}_{gaugekinetic}$. These yield added contributions to 1-loop correction to gluon propagator. (We also have to gauge fix and consequently add Faddeev Popov ghosts, e.g. gauge fixing by $G(A) = \partial^{\mu} A_{\mu} - \omega(x)$ leads to the FP determinant $\det(\frac{\delta G(A^{\alpha})}{\delta \alpha}) \sim \det(\partial^{\mu} D_{\mu})$ and then $\mathcal{L}_{g.f.+ghost} = -\frac{1}{2\ell}$ $\frac{1}{2\xi}(\partial_{\mu}A^{\mu}) - c^{\dagger}\partial^{\mu}D_{\mu}c.$ Ghosts only appear in closed loops, where the contribution has a minus sign since they're anticommuting fields.)

• Recall $e^+e^ \rightarrow \mu^+\mu^-$ at tree level in QED, with total cross section σ = $4\pi\alpha^2$ 3s $\sqrt{1-\frac{m_{\mu}^2}{s}}(1+\frac{m_{\mu}^2}{2s}) \approx \frac{4\pi\alpha^2}{3s}$ $\frac{\pi \alpha^2}{3s}$ at high energy. The total cross section for $e^+e^- \to$ hadrons at high energy is the same, up to a factor of $3\sum_i Q_i^2$, where Q_i accounts for the electric charge of the quarks and 3 accounts for their color. This gave an experimental verification of 3 colors.

• Renormalization.

Consider gauge boson 1PI loop contribution, $i(p^2g^{\mu\nu} - p^{\mu}p^{\nu})\delta^{ab}\Pi(p^2)$. Fermions contribute

$$
\Pi(p^2) \supset -\frac{g^2}{16\pi^2} \frac{4}{3} N_f T_2(r) \Gamma(2-\frac{1}{2}d) + \dots
$$

Now add 3 diagrams: two with internal gluons, and one with internal ghost. Each is separately quadratically divergent and would induce a gauge boson mass. But these problems cancel in the sum. The upshot of the sum is

$$
\Pi(p^2) \supset -\frac{g^2}{16\pi^2}(-\left(\frac{13}{6} - \frac{1}{2}\xi\right))C(G)\Gamma(2 - \frac{1}{2}d) + \dots
$$

To compute the beta function, must account for loop diagrams involving the fermion vertex. It's somewhat involved (see Peskin). But there is a nice way to determine it from the gauge field propagator in what's known as background field gauge, where one includes a classical background for the field and gauge fixes around that.

Get finally

$$
\beta(\alpha) = \frac{\alpha^2}{6\pi} \left(-11N_c + 2N_f \right).
$$

(More generally, replace $N_c \to C_2(G)$ and $2N_f \to 4n_fT_2(r)$.) The flavors contribute positively, as in QED. But the colors contribute negatively: they anti-screen charges! So the beta function can be negative, if $11N_c > 2N_f$. This is asymptotic freedom. Integrating the 1-loop result gives

$$
\alpha(\mu)^{-1}=\frac{(11N_c-2N_f)}{6\pi}\ln(\frac{\mu}{\Lambda}).
$$

To have $\alpha > 0$, we need $\mu > \Lambda$ (opposite from QED). Note $\alpha(\mu \to \infty) \to 0$, weak in $UV =$ asymptotic freedom. Explains successes of parton model (quarks) for high energy scattering. For QCD, $N_c = 3$, and $N_f = 6$. For energies below the top and bottom mass, use $N_f^{eff} = 4$. Observe e.g. $\alpha(100 GeV) \sim 0.1$, so $\Lambda \sim 200 MeV$.

On the other hand, $\alpha \to \infty$ for $\mu \to \Lambda$: forces are strong in IR, below scale Λ . Can explain confinement of quarks (there is a million dollar prize, waiting to be collected, if you prove it in detail)!

- Phases of QCD.
- Other topics to mention, anomalies, instantons, etc.