
3/10/10 Lecture 19 and 20 outline

• QED vs QED. In QED, we have gauge invariance ψ → eief(x)ψ, local U(1)

transformations. Generalize to local SU(Nc) gauge transformations: ψ → Uf (x)ψ =

exp(igT afa(x))ψ, where T a are traceless, Hermitian Nc ×Nc matrices (a = 1 . . .N2
c − 1),

and ψ is a Nc column vector. Gauge conserved color charge. Need covariant derivatives,

∂µ → Dµ = ∂µ − igAa
µT

a, i.e. introduce gauge fields, “gluons”. The Ta matrices do

not commute, [T a, T b] = ifabcT
c: the group is “non-Abelian.” (They are normalized b

TrT aT b = 1
2δ

ab, e.g. for SU(2), T a = σa, the Pauli matrices.) The effect of this is that

the Aa
µ kinetic terms are more complicated. The physics of this is that the gluons carry

color charge (unlike the photon, which carries no electric charge).

Gauge transformation: Dµψ → Df
µU

fψ = UfDµψ, i.e. Dµ → UDµU
−1, i.e. Af

µ =

UAf
µU

−1 − ig−1(∂µU)U−1.

Field strength: [Dµ, Dν ] = −igFµν , i.e. Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ], i.e. F a
µν =

∂µA
a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν .

Lagrangian

Lgaugekinetic = −
1

2
TrFµνF

µν = −
1

4
F a

µνF
µνa, Lferm = ψ̄(i /D −m)ψ.

Some parts are similar to QED, e.g. the gauge field propagator is iDab
µν = −iδab

k2+iε
(gµν −

(ξ − 1)kµkν/k2). Some differences from QED: since gluons are charged, get 3 and 4 gluon

diagrams, as seen from expanding Lgaugekinetic. These yield added contributions to 1-loop

correction to gluon propagator. (We also have to gauge fix and consequently add Faddeev

Popov ghosts, e.g. gauge fixing by G(A) = ∂µAµ − ω(x) leads to the FP determinant

det( δG(Aα)
δα

) ∼ det(∂µDµ) and then Lg.f.+ghost = −
1
2ξ

(∂µA
µ)− c†∂µDµc. Ghosts only ap-

pear in closed loops, where the contribution has a minus sign since they’re anticommuting

fields.)

• Recall e+e− → µ+µ− at tree level in QED, with total cross section σ =
4πα2

3s

√

1 −
m2

µ

s
(1+

m2

µ

2s
) ≈ 4πα2

3s
at high energy. The total cross section for e+e− → hadrons

at high energy is the same, up to a factor of 3
∑

iQ
2
i , where Qi accounts for the electric

charge of the quarks and 3 accounts for their color. This gave an experimental verification

of 3 colors.

• Renormalization.

Consider gauge boson 1PI loop contribution, i(p2gµν − pµpν)δabΠ(p2). Fermions con-

tribute

Π(p2) ⊃ −
g2

16π2

4

3
NfT2(r)Γ(2 −

1
2d) + . . . .
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Now add 3 diagrams: two with internal gluons, and one with internal ghost. Each is sepa-

rately quadratically divergent and would induce a gauge boson mass. But these problems

cancel in the sum. The upshot of the sum is

Π(p2) ⊃ −
g2

16π2
(−(

13

6
−

1
2ξ))C(G)Γ(2 −

1
2d) + . . . .

To compute the beta function, must account for loop diagrams involving the fermion

vertex. It’s somewhat involved (see Peskin). But there is a nice way to determine it from

the gauge field propagator in what’s known as background field gauge, where one includes

a classical background for the field and gauge fixes around that.

Get finally

β(α) =
α2

6π
(−11Nc + 2Nf ) .

(More generally, replace Nc → C2(G) and 2Nf → 4nfT2(r).) The flavors contribute

positively, as in QED. But the colors contribute negatively: they anti-screen charges! So

the beta function can be negative, if 11Nc > 2Nf . This is asymptotic freedom. Integrating

the 1-loop result gives

α(µ)−1 =
(11Nc − 2Nf )

6π
ln(

µ

Λ
).

To have α > 0, we need µ > Λ (opposite from QED). Note α(µ → ∞) → 0, weak in

UV = asymptotic freedom. Explains successes of parton model (quarks) for high energy

scattering. For QCD, Nc = 3, and Nf = 6. For energies below the top and bottom mass,

use Neff
f = 4. Observe e.g. α(100GeV ) ∼ 0.1, so Λ ∼ 200MeV .

On the other hand, α → ∞ for µ → Λ: forces are strong in IR, below scale Λ. Can

explain confinement of quarks (there is a million dollar prize, waiting to be collected, if

you prove it in detail)!

• Phases of QCD.

• Other topics to mention, anomalies, instantons, etc.
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