3/10/10 Lecture 19 and 20 outline

e QED vs QED. In QED, we have gauge invariance v — e/, local U(1)
transformations. Generalize to local SU(N,) gauge transformations: ¢ — Uf(z)y =
exp(igT® f.(x))y, where T® are traceless, Hermitian N, x N, matrices (a =1... N2 — 1),
and ¢ is a N, column vector. Gauge conserved color charge. Need covariant derivatives,
Oy — Dy = 0, —igA;T?, ie introduce gauge fields, “gluons”. The T, matrices do
not commute, [T T%] = ifup.T¢: the group is “non-Abelian.” (They are normalized b
TeTeT? = %5”1’, e.g. for SU(2), T* = 0%, the Pauli matrices.) The effect of this is that
the Af, kinetic terms are more complicated. The physics of this is that the gluons carry
color charge (unlike the photon, which carries no electric charge).

Gauge transformation: D,y — D{:Ufw = UfDuzp, ie. D, — UD, U™ ie. A,J; =
UAiCLU_1 —ig~ 10, U) UL,

Field strength: [D,, D,| = —igF'*", ie. F,, = 0,A, —0,A, —ig[A", A"}, ie. ], =
O AL — 9, A% 4 g e Ab A5,

Lagrangian

Louugetinetic = —5 T FW =~ TFSFW Lo =G —m)y.

Some parts are similar to QED, e.g. the gauge field propagator is iDgl; = ;Jiz (9uv —

(€ — 1)k*k" /k?). Some differences from QED: since gluons are charged, get 3 and 4 gluon
diagrams, as seen from expanding Lgqugekinetic- These yield added contributions to 1-loop
correction to gluon propagator. (We also have to gauge fix and consequently add Faddeev
Popov ghosts, e.g. gauge fixing by G(A) = 0"A, — w(x) leads to the FP determinant
det(éGéfa)) ~ det(0*D,,) and then Ly f 4 ghost = —%(BMA“) — c'O"D,,c. Ghosts only ap-
pear in closed loops, where the contribution has a minus sign since they’re anticommuting
fields.)

e Recall ete™ — ptpu~ at tree level in QED, with total cross section o =

4§§2 1— mT%‘(l + n;—si) ~ 47;?2 at high energy. The total cross section for eTe™ — hadrons
at high energy is the same, up to a factor of 3, Q?, where Q; accounts for the electric
charge of the quarks and 3 accounts for their color. This gave an experimental verification
of 3 colors.

e Renormalization.

Consider gauge boson 1PI loop contribution, i(p?g"” — ptp¥)6?TI(p?). Fermions con-

tribute
92 4 1
= ngTg(r)I‘(Q — §d) + ...

I(p?) > —



Now add 3 diagrams: two with internal gluons, and one with internal ghost. Each is sepa-
rately quadratically divergent and would induce a gauge boson mass. But these problems
cancel in the sum. The upshot of the sum is

g> 13

—1o2 (- (5 39))CG)IN(2 - 3d)+ ...

II(p?) O

To compute the beta function, must account for loop diagrams involving the fermion
vertex. It’s somewhat involved (see Peskin). But there is a nice way to determine it from
the gauge field propagator in what’s known as background field gauge, where one includes
a classical background for the field and gauge fixes around that.

Get finally
2

Bla) = g—w (—11N, + 2Ny).
(More generally, replace N. — C3(G) and 2Ny — 4ngT5(r).) The flavors contribute
positively, as in QED. But the colors contribute negatively: they anti-screen charges! So
the beta function can be negative, if 11N, > 2N;. This is asymptotic freedom. Integrating

the 1-loop result gives
1 (11N, —2Ny)
= 1
(1) —

To have o > 0, we need p > A (opposite from QED

).

. Note a(p — o0) — 0, weak in

R RS

UV = asymptotic freedom. Explains successes of parton model (quarks) for high energy
scattering. For QCD, N, = 3, and Ny = 6. For energies below the top and bottom mass,
use N;ff = 4. Observe e.g. a(100GeV') ~ 0.1, so A ~ 200MeV'.

On the other hand, o — oo for u — A: forces are strong in IR, below scale A. Can
explain confinement of quarks (there is a million dollar prize, waiting to be collected, if
you prove it in detail)!

e Phases of QCD.

e Other topics to mention, anomalies, instantons, etc.



