
3/5/10 Lecture 18 outline

• Last time: The photon has 1PI propagator iΠµν(k) = (p2gµν − pµpν)Π(k2). Sum-

ming these gives the full propagator. Writing it in Feynman gauge, get for the full propa-

gator −igµν/p
2(1 − Π(p2)). Assuming that Π(p2) is regular at p2 = 0, get pole at p2 = 0

with residue Z3 ≡ (1 − Π(0))−1.

Result to one loop from virtual electron/positron loop:

iΠµν(q) = −(−ie)2
∫

d4k

(2π)4
tr

(

γµ i

/k −m
γν i

/k + q/−m

)

.

Combine denominators using Feynman parameter

1

(k2 −m2)((k + q)2 −m2
=

∫ 1

0

dx
1

(`2 + x(1 − x)q2 −m2)2

with ` = k + xq. Go to Euclidean space and do integrals using our previous tables of

integrals in dim-reg to find

Π(p2) = − 8e2

(4π)d/2
Γ(2 − 1

2
d)

∫ 1

0

dxx(1 − x)∆
1
2

d−2,

with ∆ = m2 − x(1 − x)p2. Evaluating for d = 4 − ε,

Π(p2) = −2α

π

∫ 1

0

dxx(1 − x)

(

2

ε
− γ + log(4π/∆)

)

.

We now renormalize, ψB = Z
1/2
2 ψR, Aµ

B = Z
1/2
3 Aµ

R, eBZ2Z
1/2
3 = eRZ1. LB =

LR + Lc.t..

In particular, the counter-term contributes to iΠµν

as δΠ = −(Z3 − 1). So, to one

loop, we get

Π(p2) = −α
π
ε−1 2

3
+ (Z3 − 1)(1) + finite.

in MS, choose Z3 to cancel the 1/ε term only, so Z3 − 1 = −α
π
ε−1 2

3
.

We’ll soon note that ephys =
√
Z3eB , or better α = e2phys/4π = Z3µ

−εαB. Write this

as αB = αµεZα, where

Zα ≡ Z−1
3 ≡ 1 +

∑

k

ak(α)ε−k.

In particular, we found above that a1 = 2α/3π to one-loop order.

Now it’s just like what we did in λφ4, use the fact that αB is independent of µ to get

0 = εαZ−1
3 + β(α, ε)Z−1

3 + β(α, ε)α
d

dα
Z−1

3 .

1



where β(α, ε) = dα/d lnµ. To have a smooth ε→ 0 limit, we need

β(α, ε) = −εα+ β(α),

β(α) = α2 da1

dα
.

Using the above result for a1, we get finally

β(α) =
dα

d lnµ
=

2α2

3π
+ higher loops.

This is the promised beta function of QED. It’s positive, as in λφ4, and every other theory

except non-Abelian gauge theories. Its sign is again related to charge screening, so the

effective charge is small at long distances (IR free) and blows up at short distances (the

Landau pole), as we discussed before. Integrate 1-loop beta function:

α−1(µ) = − 2

3π
ln(

µ

Λ
).

Makes sense only for µ < Λ, i.e. in the IR. Λ is a UV cutoff. Get α → ∞ as µ → Λ; this

is the Landau pole. Looks bad, but we’ll see the the energy scale where it blows up is so

fantastically large that we don’t need to worry (something new should fix it in the UV,

e.g. grand unification can do the job). It does not run to zero in the IR, because there are

no massless charged particles. It runs toward zero until it gets to the energy scale of the

lightest charged particle, me = 0.5MeV , and then it stops running. So 137 = 3
3π

ln(Λ/me).

Gives Λ = me exp(137π), which too huge to worry about the apparent Landau pole there.

(Other charged particles will bring the scale of Λ down to Λ = me exp(137π/Nf) where

Nf is the effective number of charged particles, but it’s still huge.)

• Let’s note some other interesting things about the finite part of Π(p2). Π(p2) has a

branch cut starting at p2 = 4m2, and its imaginary part above and below the cut have

Im(Π(p2 ± iε) = ∓α
3

√

1 − 4m2

p2
(1 +

2m2

p2
),

which is related by the optical theorem to the total cross section for creating an on-shell

fermion-antifermion pair,
dσ

dΩ
=

|~p|
32π2s3/2

1

4

∑

spins

|M|2.
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• Continue with QED renormalization. ψB = Z
1/2
2 ψR, Aµ

B = Z
1/2
3 Aµ

R, eBZ2Z
1/2
3 =

eRZ1. LB = LR + Lc.t.. We discussed Z3 above, from the full photon propagator. Now

consider the full electron propagator,

S(p) =
i

/p−m− Σ(p) + iε
,

where −iΣ is the 1PI contribution to the propagator. E.g. to 1 loop get

−iΣ(p2) = (−ie)2
∫

d4k

(2π)4
−igµν

k2
γµ i

/p− /k −m
γν .

The function S(p) has a pole at the physical mass, mphys = m+Σ(0), so the constant

part of Σ shifts the mass. The ∼ /p part of Σ renormalizes the residue of S(p). The residue

is iZ2. Again, we can add counterterms to shift these and preserve a renormalization

condition.

• 1PI vertex for electron interacting with photon, −ieΓµ(p′, p). The tree-level term

is −ieγµ. The photon has momentum q = p′ − p. Can show that Lorentz and kinematic

structure is such that

Z2Γ
µ(p′, p) = γµF1(q

2) + i
σµνqν
2m

F2(q
2),

where σµν = 1
2 i[γ

µ, γν] and Fi are “form factors.” The electron has magnetic moment

~µ = g(e~S/2m), with g = 2 + 2F2(0). The diagram for F2(0) at one-loop is convergent,

and yields F2(0) = α/2π. The diagram for F1(q
2) is UV, and also IR divergent at q2 = 0.

Define Γµ(q2 = 0) = Z−1
1 γµ.

• The Ward identity gives

S(pk)[−iekµΓµ(pk, p)]S(p) = e(S(p) − S(pk)).

So

−ikµΓµ(pk, p) = S−1(pk) − S−1(p)

This gives Z1 = Z2. Thus F1(0) = 1.

• Bare and renormalized fields, and counterterms. ψB = Z
1/2
2 ψR, Aµ

B = Z
1/2
3 Aµ

R,

eBZ2Z
1/2
3 = eRZ1. LB = LR + Lc.t..

LR = −1

4
FRµνF

µν
R + ψ̄R(i/∂ − eR /AR −mR)ψR,
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Lct = −1

4
δ3(FRµν)2 + ψ̄R(iδ2/∂ − δ1eR /AR − δm)ψR.

Where δ1 = Z1 − 1, δ2 = Z2 − 1, δ3 = Z3 − 1, and δm = Z2m0 −m. We have

eBZ2Z
1/2
3 = eRZ1,

where the Z1 will cancel the Z−1
1 in Γµ(q2 = 0) = Z−1

1 γµ.

• Gauge invariance requires Z1 = Z2, since then δ1 = δ2 and the counterterm pieces

have the same gauge invariance. Sure enough, direct calculation shows Z1 = Z2 (to all

orders in perturbation, theory, and exactly)! This is a special case of a Ward identity,

stating Γµ(p, p) = −∂pµΣ(p). So get ephys =
√
Z3eB , as promised.

So eR =
√
Z3e0 = ephys. Shows that renormalized charge is same for all species (e.g.

electron and muon and anti-proton all have exactly the same effective charge).
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