
3/3/10 Lecture 17 outline

• Functional integral for gauge fields. Important point: gauge invariance. Write A =

Aµdx
µ. Recall gauge symmetry A → Aα = A+ dα(x), with ψ → e−ieα(x)ψ. Redundancy

in description, can only observe gauge invariant quantities. Need to replace ∂µ → Dµ ≡

∂µ + ieAµ. Then Dα
µψ

α = e−ieαDµψ transforms nicely, with just an overall phase, and

ψ̄Dµψ is gauge invariant. So the Dirac lagrangian, ψ̄(i /D − m)ψ is gauge invariant. In

functional integral, will have
∫

[dA] exp(iS). Integration measure must be gauge invariant,

implies it gets a factor of gauge orbit volume. Would like to integrate only over a slice of

inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since

otherwise there is no well defined B−1. Recall S =
∫

d4x[−1
4F

2
µν ] = 1

2

∫

d4kAµ(x)(∂2gµν −

∂µ∂ν)Aν(x). Note action vanishes if Ãµ(k) = kµα(k). Gauge invariance. AT
µ = PµνA

ν ,

Pµν = gµν − ∂µ∂ν/∂
2. −

1
4FµνF

µν = 1
2A

T
µ∂

2gµνAT
ν . Can’t invert kinetic terms uniquely to

find Green’s function. We need to fix the gauge.

The functional integral should be over
∫

[dAµ]/(GE), where we divide by the volume

of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge

transformations α(x), e.g. Aµ → Aµ + ∂µα(x) in the Abelian case. We want to do the

functional integral over Aµ, dividing out by the α(x).

(Here are some details: Do this via

1 =

∫

[dα(x)]δ(G(Aα)) det

(

δG(Aα)

δα

)

= ∆

∫

[dα]δ(G(Aα)),

where G(A) = 0 is some gauge fixing condition, e.g. Lorentz gauge, G(A) = ∂µA
µ and

∆ = det

(

δG(Aα)

δα

)

G=0

.

∆ is the Faddeev-Popov determinant. Write the functional integral as (using the gauge

invariance of measure and action)
∫

[dα][dA]∆δ(G[A]) exp(iS[A]).

Have factored out the integral over the group volume. We can then just easily divide out

by [dα], just cross it out. What’s left is the gauge fixing delta function, and appropriate

determinant factor.

Take e.g. G = ∂µAµ − f(x) for some function f(x). Then ∆ ∼ det(∂2) is a constant.

Get

eiW = N

∫

(dA)eiSδ(∂µAµ − f) = N

∫

[dA][df ]eiSδ(∂µAµ − f)G(f) = N

∫

[dA]eiSG(∂A),

1



for arbitrary functional G. Choose G(f) = exp(−1
2 iξ

−1
∫

d4xf2), for some real number ξ.

Get

eiW = N

∫

[dA] exp(iS −
1
2
ξ−1

∫

d4x(∂µAµ)2).

Then get for the propagator

Dµν =
−i

k2
[gµν −

kµknu

k2
+ ξ

kµkν

k2
].

Popular choices: ξ = 1 is Feynman propagator, ξ = 0 is Landau gauge propagator. Physics

is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let’s

choose to use Feynman gauge.)

• The Ward identity obtained from gauge invariance states that kµM
µ = 0, where

Mµ is the part of the amplitude with a external photon line omitted; this ensures that

εµ → εµ + f(k)kµ is a symmetry.

• Recall QED Feynman rules, e.g. vertex: −ieγµ.

• The photon has 1PI propagator iΠµν(k) = (p2gµν − pµpν)Π(k2). Summing these

gives the full propagator. Writing it in Feynman gauge, get for the full propagator

−igµν/p
2(1 − Π(p2)). Assuming that Π(p2) is regular at p2 = 0, get pole at p2 = 0 with

residue Z3 ≡ (1 − Π(0))−1.
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