3/3/10 Lecture 17 outline

• Functional integral for gauge fields. Important point: gauge invariance. Write $A = A_{\mu}dx^{\mu}$. Recall gauge symmetry $A \to A^{\alpha} = A + d\alpha(x)$, with $\psi \to e^{-ie\alpha(x)}\psi$. Redundancy in description, can only observe gauge invariant quantities. Need to replace $\partial_{\mu} \to D_{\mu} \equiv \partial_{\mu} + ieA_{\mu}$. Then $D^{\alpha}_{\mu}\psi^{\alpha} = e^{-ie\alpha}D_{\mu}\psi$ transforms nicely, with just an overall phase, and $\bar{\psi}D_{\mu}\psi$ is gauge invariant. So the Dirac lagrangian, $\bar{\psi}(i\not{D} - m)\psi$ is gauge invariant. In functional integral, will have $\int [dA] \exp(iS)$. Integration measure must be gauge invariant, implies it gets a factor of gauge orbit volume. Would like to integrate only over a slice of inequivalent gauge fields, without integrating over the gauge orbits. Need to do this, since otherwise there is no well defined B^{-1} . Recall $S = \int d^4x [-\frac{1}{4}F^2_{\mu\nu}] = \frac{1}{2}\int d^4kA_{\mu}(x)(\partial^2 g^{\mu\nu} - \partial^{\mu}\partial^{\nu})A_{\nu}(x)$. Note action vanishes if $\tilde{A}_{\mu}(k) = k_{\mu}\alpha(k)$. Gauge invariance. $A^T_{\mu} = P_{\mu\nu}A^{\nu}$, $P_{\mu\nu} = g_{\mu\nu} - \partial_{\mu}\partial_{\nu}/\partial^2$. $-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} = \frac{1}{2}A^T_{\mu}\partial^2 g^{\mu\nu}A^T_{\nu}$. Can't invert kinetic terms uniquely to find Green's function. We need to fix the gauge.

The functional integral should be over $\int [dA^{\mu}]/(GE)$, where we divide by the volume of the gauge equivalent orbits. The gauge equivalent orbits are associated with gauge transformations $\alpha(x)$, e.g. $A_{\mu} \to A_{\mu} + \partial_{\mu}\alpha(x)$ in the Abelian case. We want to do the functional integral over A^{μ} , dividing out by the $\alpha(x)$.

(Here are some details: Do this via

$$1 = \int [d\alpha(x)]\delta(G(A^{\alpha})) \det\left(\frac{\delta G(A^{\alpha})}{\delta\alpha}\right) = \Delta \int [d\alpha]\delta(G(A^{\alpha})),$$

where G(A) = 0 is some gauge fixing condition, e.g. Lorentz gauge, $G(A) = \partial_{\mu}A^{\mu}$ and

$$\Delta = \det\left(\frac{\delta G(A^{\alpha})}{\delta \alpha}\right)_{G=0}$$

 Δ is the Faddeev-Popov determinant. Write the functional integral as (using the gauge invariance of measure and action)

$$\int [d\alpha][dA]\Delta\delta(G[A])\exp(iS[A]).$$

Have factored out the integral over the group volume. We can then just easily divide out by $[d\alpha]$, just cross it out. What's left is the gauge fixing delta function, and appropriate determinant factor.

Take e.g. $G = \partial^{\mu} A_{\mu} - f(x)$ for some function f(x). Then $\Delta \sim \det(\partial^2)$ is a constant. Get

$$e^{iW} = N \int (dA)e^{iS}\delta(\partial^{\mu}A_{\mu} - f) = N \int [dA][df]e^{iS}\delta(\partial^{\mu}A_{\mu} - f)G(f) = N \int [dA]e^{iS}G(\partial A),$$

for arbitrary functional G. Choose $G(f) = \exp(-\frac{1}{2}i\xi^{-1}\int d^4x f^2)$, for some real number ξ . Get

$$e^{iW} = N \int [dA] \exp(iS - \frac{1}{2}\xi^{-1} \int d^4x (\partial^\mu A_\mu)^2).$$

Then get for the propagator

$$D_{\mu\nu} = \frac{-i}{k^2} [g_{\mu\nu} - \frac{k_{\mu}k_n u}{k^2} + \xi \frac{k_{\mu}k_{\nu}}{k^2}].$$

Popular choices: $\xi = 1$ is Feynman propagator, $\xi = 0$ is Landau gauge propagator. Physics is ξ independent (result of gauge invariance, which yields Ward-Takahashi identities). Let's choose to use Feynman gauge.)

• The Ward identity obtained from gauge invariance states that $k_{\mu}\mathcal{M}^{\mu} = 0$, where \mathcal{M}^{μ} is the part of the amplitude with a external photon line omitted; this ensures that $\epsilon^{\mu} \to \epsilon^{\mu} + f(k)k^{\mu}$ is a symmetry.

• Recall QED Feynman rules, e.g. vertex: $-ie\gamma^{\mu}$.

• The photon has 1PI propagator $i\Pi^{\mu\nu}(k) = (p^2 g^{\mu\nu} - p^{\mu} p^{\nu})\Pi(k^2)$. Summing these gives the full propagator. Writing it in Feynman gauge, get for the full propagator $-ig_{\mu\nu}/p^2(1-\Pi(p^2))$. Assuming that $\Pi(p^2)$ is regular at $p^2 = 0$, get pole at $p^2 = 0$ with residue $Z_3 \equiv (1-\Pi(0))^{-1}$.