$2/22/10$ Lecture 14 outline

• Last time:

$$
\left(\frac{\partial}{\partial \ln \mu} + \beta(\lambda_R) \frac{\partial}{\partial \lambda_R} + \gamma_m m_R \frac{\partial}{\partial \ln m_R} - n\gamma \right) \tilde{\Gamma}_R^{(n)}(p_1, \dots p_n; \lambda_R, m_R, \mu) = 0
$$

Here

$$
\beta(\lambda) \equiv \frac{d}{d \ln \mu} \lambda_R
$$

$$
\gamma = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

$$
\gamma_m = \frac{d \ln m_R}{d \ln \mu}.
$$

• Understand what β and γ mean: the bare quantities are some function of the renormalized ones and epsilon. E.g. for $\lambda \phi^4$ in MS we have

$$
\lambda_B = \mu^{\epsilon}(\lambda + \delta_{\lambda}) \equiv \mu^{\epsilon} \lambda Z_{\lambda}
$$

Let us write

$$
Z_{\lambda} \equiv 1 + \sum_{k} a_{k}(\lambda) \epsilon^{-k},
$$

where we found $a_1(\lambda) = +3\lambda/16\pi^2$ to one loop. The bare parameter λ_B is independent of μ , whereas λ depends on μ , such that the above relation holds. Take $d/d\ln\mu$ of both sides,

$$
0 = \epsilon \lambda Z_{\lambda} + \beta(\lambda, \epsilon) Z_{\lambda} + \beta(\lambda, \epsilon) \lambda \frac{dZ_{\lambda}}{d\lambda}.
$$

Using the above expansion for Z_{λ} and requiring that $\beta(\lambda, \epsilon)$ be regular at $\epsilon = 0$, so $\beta(\lambda,\epsilon) = \beta(\lambda) + \sum_{n} \beta_n \epsilon^n$, gives

$$
\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)
$$

$$
\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda}
$$

$$
\lambda^2 \frac{da_{k+1}}{d\lambda} = \beta(\lambda) \frac{d}{d\lambda}(\lambda a_k).
$$

The beta function is determined entirely from a_1 . The $a_{k>1}$ are also entirely determined by a_1 . In k-th order in perturbation theory, the leading pole goes like $1/\epsilon^k$.

We find for $\lambda \phi^4$

$$
\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3).
$$

Integrating, this gives

$$
\lambda = \lambda_0 \left(1 - \frac{3}{16\pi^3} \lambda_0 \ln(\mu/\mu_0) \right)^{-1}.
$$

• We similarly have

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

where

$$
Z_{\phi} = 1 + \sum_{k} Z_{\phi}^{-k}(\lambda) \epsilon^{-k}.
$$

So

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2}\beta(\lambda,\epsilon)\frac{d}{d\lambda}\ln Z_{\phi}.
$$

Using $\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)$, we get

$$
\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)}.
$$

We similarly have $m_B^2 = (m^2 + \delta_{m^2})Z_{\phi}^{-1} \equiv Z_m m^2$ and

$$
\gamma_m(\lambda) = \frac{1}{2} \frac{d \ln m^2}{d \ln \mu} = -\frac{1}{2} \frac{d \ln Z_m}{d \ln \mu} = -\frac{1}{2} \beta \frac{d \ln Z_m}{d \lambda} = \frac{1}{2} \lambda \frac{d Z_m^{(1)}}{d \lambda}
$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$. In all these cases, only the coefficient of $1/\epsilon$ matters.

In particular, for $\lambda \phi^4$ we have

$$
\gamma_m(\lambda) = \frac{1}{2} \lambda \frac{dZ_m^{(1)}}{d\lambda} = \frac{1}{2} \frac{\lambda}{16\pi^2} - \frac{5}{12} \frac{\lambda^2}{6(16\pi^2)^2} + \dots
$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$ and ... are higher orders in perturbation theory, and

$$
\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)} = \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots
$$

For any gauge invariant field ϕ , we always have $\gamma_{\phi} \geq 0$, where $\gamma_{\phi} = 0$ iff it is a free field. This follows from the spectral decomposition result that $Z \leq 1$.

• Note: $\beta > 0$ means the coupling is small in the IR, and large in the UV. Such theories are "not asymptotically free" or are "IR free." Most theories are like this, e.g. $\lambda \phi^4$, QED, Yukawa interactions. If $\beta < 0$, then the coupling is small in the UV, and large in the IR. Such theories are "asymptotically free;" only non-Abelian gauge theories, like QCD, are like that.