2/17/10 Lecture 13 outline

e Last time:
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— P(1/z) F ind(x), argue that wp(s) = 2ImA(s) for s > 4m?2. (The minus
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sign in the definition of A above is related to the special definition of '™ for n =2 and
A ~1/T@)
e Example from last quarter: tree-level contribution to the Compton effect, scattering

light off an electron. The S matrix element is given at tree-level by S = 1+ ¢T', where

(f1iT)i) = i(2m)*6* (ks + py — ki + pi) M g

My = =atog.on) ({35 + gt ) W)
More generally, the S-matrix element is given according to LSZ by the connected, ampu-
tated Greens functions. Note that it is not just the 1PI diagrams contributing (the above
example is a non-1PI contribution).

e Analyticity properties. E.g. 2 — 2 scattering. M(s) = M(s*)*. The real part
ReM is continuous across the real axis, whereas the I'm part picks up a minus sign. So
the discontinunity DiscM(s) = 2iImM(s +ie). E.g. = P(1/z) Fimd(x) shows that
is —2mid(p? — m?).

e Optical theorem. The S-matrix S = U(t; = 0o,t; = —oc0) is unitary, STS = 1.
Write S = 1 + 4T, then get 2Im(T) = —i(T —T") = T1T. Thus
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Take f =1, get

where dII,, is the density of states for the process i — m. This is the optical theorem. It
relates the imaginary part of the forward scattering amplitude to the total cross section,
e.g.

ImM (ky, ko — ky, ko) = 2EcmPem ot (K1, ko — anything).
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Recall that the imaginary part of amplitudes is discontinuous across the cut starting

at s = 4m?. So we can there relate
DiseM(s) = 2iImM(s) ~ /dH \Meinl? ~ tor

where cith means cut in half.

Consider e.g. the 1-loop contribution to the 4-point amplitude in A¢*, in the s channel
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where p = p; + p2. Recall that we evaluated this as (with s = p?)
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where
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The 1/e term (together with some constants, depending on our scheme) is cancelled by

A(s) =2 — \/1—4m2/310g< 1—4m2/s—|—1> .

a counterterm diagram. The function A(s) remains. The threshold is where s = 4m?.
Below threshold, the amplitude is purely real. Above threshold, there is a discontinuous

imaginary part, with
DiseM(s) = 2iImM(s) ~ /dH IMeinl? ~ ror

where cih means cut in half. The tree-level scattering amplitude comes from the imaginary
part of the one-loop amplitude.

e Let’s go back to

fg)(pl, . Dn;AB,MpB,€) = Z;Wf%)(pl, e D AR, MR, 4y €).
For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-
ization point p and the scheme. The LHS does not! This leads to what is known as the
renormalization group equations, which state how the renormalized quantities must vary
with p.
Take d/dIn p of both sides, and use dI'g/du = 0. This gives

0 0 o - (n) . B

2



Here
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This is the RG equation. Various variants, e.g. Callan-Symanzik equation. It can be
integrated, to relate the renormalized Greens functions at different scales p and p'. Let us
focus on what 8 and v mean.

e Understand what  and 7 mean: the bare quantities are some function of the

renormalized ones and epsilon. E.g. for A¢* in MS we have
AB = /J,E(A + 5>\) = uA\Z)y

Let us write
Zy=1+ Zak()\)e_k,
k

where we found a;(\) = +3)\/1672 to one loop. The bare parameter A\p is independent
of u, whereas A depends on p, such that the above relation holds. Take d/dlnu of both
sides,
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