
2/17/10 Lecture 13 outline

• Last time:

−i∆̃(p2) =
i

p2 − m2 − Π′(p2) + iε
=

iZ

p2 − m2 + iε
+

∫ ∞

∼4m2

dM2

2π
ρ(M2)

i

p2 − M2 + iε
.

So, using 1
x±iε = P (1/x) ∓ iπδ(x), argue that πρ(s) = 2Im∆̃(s) for s ≥ 4m2. (The minus

sign in the definition of ∆̃ above is related to the special definition of Γ̃(n) for n = 2 and

∆̃ ∼ 1/Γ̃(2).)

• Example from last quarter: tree-level contribution to the Compton effect, scattering

light off an electron. The S matrix element is given at tree-level by S = 1 + iT , where

〈f |iT |i〉 = i(2π)4δ4(kf + pf − ki + pi)Mfi

Mfi = −e2ū(pf , αf )

(
ε/f

1

/pi + /ki − m
ε/i + ε/i

1

/pi − /kf − m
ε/f

)
u(pi, αi).

More generally, the S-matrix element is given according to LSZ by the connected, ampu-

tated Greens functions. Note that it is not just the 1PI diagrams contributing (the above

example is a non-1PI contribution).

• Analyticity properties. E.g. 2 → 2 scattering. M(s) = M(s∗)∗. The real part

ReM is continuous across the real axis, whereas the Im part picks up a minus sign. So

the discontinunity DiscM(s) = 2iImM(s + iε). E.g. 1
x±iε = P (1/x) ∓ iπδ(x) shows that

the discontinunity of 1
p2−m2+iε is −2πiδ(p2 − m2).

• Optical theorem. The S-matrix S = U(tf = ∞, ti = −∞) is unitary, S†S = 1.

Write S = 1 + iT , then get 2Im(T ) ≡ −i(T − T †) = T †T . Thus

−i(2π)4δ4(pf−pi)(Mfi−M∗
if ) =

∑

m

∏

j

∫
d3~kj

(2π)32Ej
MfmM∗

im(2π)4δ4(pf−pm)(2π)4δ4(pf−pi).

Take f = i, get

2ImMii =
∑

m

∫
dΠm|Mim|2,

where dΠm is the density of states for the process i → m. This is the optical theorem. It

relates the imaginary part of the forward scattering amplitude to the total cross section,

e.g.

ImM(k1, k2 → k1, k2) = 2Ecmpcmσtot(k1, k2 → anything).
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Recall that the imaginary part of amplitudes is discontinuous across the cut starting

at s = 4m2. So we can there relate

DiscM(s) = 2iImM(s) ∼

∫
dΠ |Mcih|

2
∼ σtot

where cih means cut in half.

Consider e.g. the 1-loop contribution to the 4-point amplitude in λφ4, in the s channel

M(1) = 1
2λ2

∫
d4kE

(2π)4
1

( 1
2
p + k)2 − m2 + iε

1

( 1
2
p − k)2 − m2 + iε

,

where p = p1 + p2. Recall that we evaluated this as (with s = p2)

λ2

32π2

(
2

ε
− γ + log

4πµ2

m2
+ A(s),

)

where

A(s) = 2 −
√

1 − 4m2/s log

(√
1 − 4m2/s + 1√
1 − 4m2/s − 1

)
.

The 1/ε term (together with some constants, depending on our scheme) is cancelled by

a counterterm diagram. The function A(s) remains. The threshold is where s = 4m2.

Below threshold, the amplitude is purely real. Above threshold, there is a discontinuous

imaginary part, with

DiscM(s) = 2iImM(s) ∼

∫
dΠ |Mcih|

2
∼ σtot

where cih means cut in half. The tree-level scattering amplitude comes from the imaginary

part of the one-loop amplitude.

• Let’s go back to

Γ̃
(n)
B (p1, . . . pn; λB, mB, ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ.

Take d/d lnµ of both sides, and use dΓB/dµ = 0. This gives

(
∂

∂ lnµ
+ β(λR)

∂

∂λR
+ γmmR

∂

∂ lnmR
− nγ

)
Γ̃

(n)
R (p1, . . . pn; λR, mR, µ) = 0
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Here

β(λ) ≡
d

d lnµ
λR

γ = 1
2

d

d lnµ
lnZφ

γm =
d lnmR

d lnµ
.

This is the RG equation. Various variants, e.g. Callan-Symanzik equation. It can be

integrated, to relate the renormalized Greens functions at different scales µ and µ′. Let us

focus on what β and γ mean.

• Understand what β and γ mean: the bare quantities are some function of the

renormalized ones and epsilon. E.g. for λφ4 in MS we have

λB = µε(λ + δλ) ≡ µελZλ

Let us write

Zλ ≡ 1 +
∑

k

ak(λ)ε−k,

where we found a1(λ) = +3λ/16π2 to one loop. The bare parameter λB is independent

of µ, whereas λ depends on µ, such that the above relation holds. Take d/d lnµ of both

sides,

0 = ελZλ + β(λ, ε)Zλ + β(λ, ε)λ
dZλ

dλ
.
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