
1/6/10 Lecture outline

? Reading: Srednicki ch. 6.

• We’ll focus for a while on scalar field theory, e.g. L = 1
2∂µφ∂

µφ − V (φ), with e.g.

V (φ) = 1
2
m2φ2 + Vint(φ), with e.g. Vint(φ) = 1

4!
λφ4.

• Last quarter we discussed canonical quantization. The following is a summary for

those who want a brief review (not to be discussed in lecture). The field φ(x) is

analogous to q(t) in QM (indeed, QM is a particular case of QFT in one dimension), and

its conjugate momentum is Π = ∂L/∂φ̇. These are operators, with equal time commutators

[φ(t, ~x),Π(t, ~x′)] = ih̄δ3(~x− ~x′).

We’ll usually set h̄ = 1. The S-matrix elements, used to compute scattering cross sections

and lifetimes etc. are computed from an amplitude 〈f |S|i〉 which is related to the vacuum

expectation values of time-ordered products of the fields. This is seen from Dyson’s formula

or from the LSZ derivation discussed in detail last quarter. We found

〈f |i〉 = 〈k1′ . . . kn′ |k1 . . . kn〉

= in+n′

n′∏

j′=1

∫
d4x′je

ik′

jx′

j (∂2
j′ +m2)

n∏

j=1

e−ikjxj (∂2
j +m2)Gn+n′(x1 . . . xn, x1′ . . . xn′),

(1)

where

Gn+n′(x1 . . . xn, x1′ . . . xn′) ≡ 〈0|Tφ(x1′) . . . φ(xn′)φ(x1) . . . φ(xn)|0〉. (2)

Using Wick’s theorem,

T (φ1 . . . φn) =: φ1 . . . φn : + : all contractions,

then led to a derivation of Feynman’s rules for computing amplitudes, from Feynman

diagrams.

• Our first topic will be to get an alternative derivation of the Feynman rules, using the

Feynman path integral. This gives an alternative to canonical quantization for quantizing

particles and fields, and additional insights into the Feynman diagrams and rules.

We’ll start with considering particle quantum mechanics. Consider the time evolution

operator

U(xa, xb;T ) = 〈xb|e
−iHT/h̄|xa〉.
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Satisfies SE

ih̄∂TU = HU.

Feynman:

U(xa, xb;T ) =

∫
[dx(t)]eiS[x(t)]/h̄.

Integral can be broken into time slices, as way to define it. Discuss how to derive this

formula from the usual description of QM with operators, by introducing the time slices

and a complete set of q and p eigenstates at each step.

E.g. free particle

(
−im

2πh̄ε

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ε

N∑

i=1

(xi − xi−1)
2]

Where we take ε→ 0 and N → ∞, with Nε = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation): ∫
∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iε, with ε > 0, and then take ε→ 0+. We’ll see that

this is related to the iε that we saw last quarter in the Feynman propagator, which gave

the T ordering.

After n− 1 steps, get integral:

(
2πih̄nε

m

)
−1/2

exp[
m

2πih̄nε
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)
−1/2

exp[im(xb − xa)2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)
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Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
−

2m2

2h̄T
≈
mxλ

h̄T
= pλ/h̄.

Gives p = h̄k.

Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can show

p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb). Agrees

with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• Nice application: Aharonov-Bohm. Recall L = 1
2
m~̇x

2
+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮

~A·d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.

• The same derivation as above leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

A key point: the functional integral automatically accounts for time or-

dering! Note that the LHS above involves time ordered operators, while the RHS has a

functional integral, which does not involve operators (so there is no time ordering). The

fact that the time ordering comes out on the LHS is wonderful, since know that we’ll

need to have the time ordering for using Dyson’s formula, or the LSZ formula, to compute

quantum field theory amplitudes.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). E.g.

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =

∫
[dφ]eiS/h̄ S =

∫
d4xL.

This is then used to compute Green’s functions:

〈Ω|T

n∏

i=1

φH(xi)|Ω〉 = Z−1
0

∫
[dφ]

n∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄). Again, as noted above, the T ordering will be automatic.
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