1/22/09 Lecture 7 outline
e We normalize Z[J = 0] = 1, since we anyway divide by the vacuum-to-vacuum
amplitude. This recovers the story of cancellation of bubble diagrams. For computing
S-matrix elements, we will especially be interested in connected Green’s functions. There

are nice combinatoric formulae (you might have already seen some last quarter?). E.g.
Z all diagrams = ( “connected”) . exp(z disconnected vacuum bubbles).

And the vacuum bubble diagrams cancel. We write “connected” because for n > 2 point
functions there are still disconnected diagrams, connected to the external points, included
in this sum. But even those disconnected diagrams drop out when we consider S — 1: they
correspond to the 1. In the end, we're interested in the fully connected diagrams. There is
a generating functional for them. (N.B. sometimes people reverse the names of what I'm
calling W and Z!. Peskin calls W — E.) Defining,

iW[J] = In Z[J]

WJ] is the generating functional for connected Green’s functions

G (z1,...20) = H —w, .

i.e.

J] :hzﬁ/d‘lxl A2, Gz, T(21) .. T ().
n=1 "

In momentum space, we can write:

Zn./dkl- dkﬂ( ki) ..o J(=kn)Ge(ky, .. k).

e Examples, to illustrate how iW|[J| = In Z[J] gives the connected diagrams. First

(00 575777 ) = (006 (0)s = (6l (90

Note that (¢(x)¢(y)) has two types of contributions, connected and disconnected; the

2nd term precisely cancels off the disconnected ones. Similarly §W/§.J3 has terms like
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(Ppdp) — (00)(9) +2(¢)(¢) (), which give precisely (¢@P)connectea- Can prove by induction
that the log in W properly subtracts away all non-connected diagrams!

e Will later discuss LSZ: how to relate Green’s functions to S-matrix elements (and
hence physical observables). Will see there that only connected diagrams contribute; this
is why W is useful.

e Let’s write

ez'W[J] _ N/[d¢]e%(s[¢]+fJ¢),

(here we rescaled J by factor of 1/h compared with before).

e Suppose diagram has I internal lines, V' vertices, L loops. Connected graphs have
L =1-V +1. Graphs go like i"VA! = A1, So W[J] = W_1h™t + Wy + AWy + ..,
where W_; are tree-graphs (no loops), Wy gives the 1-loop graphs, etc.

e Example: free Klein Gordon theory. We found Z[J] above. Then

W] =iih™ /d4x/d4yJ(X)DF(x —y)J(y).

(Rescaled source J compared with before.)

We see that the only connected Green’s function in this case is the 2-point function:

GY) (z,y) = Gz —y) = hDp(z —y).

In an interacting theory, like A¢?,
G? (2,y) = hDp(z — y) + O()\) corrections.

e Emphasize that tree graphs are classical. Example: consider £ = %Bugb@“gb —

%m2¢2 — %)\& + ¢J, with the source term J. The classical field EOM is

1
(0,0" +m*)¢. = —gwi’ + J(x).
We can solve this classically to zero-th order in A as
60w = [ dyete - p)is(y).

where (9,0" + m?)Dp(z —y) = —id(x —y). To solve to next order in A, we plug this back
into the above:

o0 (@) = 6(w) ~ i) [ dyDelz - 1)l w)°

3!
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Continue this way, this can be represented as a sum of tree-level diagrams, with one ¢ and
different numbers of J’s on the external legs. This is perturbation theory for the classical
field theory.

e Examples of diagrams contributing to Gy, for n = 2,4, 6, in A\¢™.

e We have seen that the loop expansion is an expansion in powers of A, since diagrams

go like pE—t

. Question: are we expanding in & (loops), or in powers of the small coupling
constants, or both? Answer: it’s generally the same expansion. Consider e.g. A\¢" interac-
tion. Then a connected diagram with E external lines (amputating their propagators) and
I internal lines and V vertices is ~ B/ "V AV. Now weuse L=I—V +1and E+2] =7V
(conservation of ends of the lines) to get that the diagram is ~ (h)\Q/(T_Q))L_l M\E/(r=2),
so for fixed E the loop expansion is an expansion in powers of the effective coupling

a ~ hA2/T2,



