
1/22/09 Lecture 7 outline

• We normalize Z[J = 0] = 1, since we anyway divide by the vacuum-to-vacuum

amplitude. This recovers the story of cancellation of bubble diagrams. For computing

S-matrix elements, we will especially be interested in connected Green’s functions. There

are nice combinatoric formulae (you might have already seen some last quarter?). E.g.

∑

all diagrams =
(

∑

“connected”
)

· exp(
∑

disconnected vacuum bubbles).

And the vacuum bubble diagrams cancel. We write “connected” because for n > 2 point

functions there are still disconnected diagrams, connected to the external points, included

in this sum. But even those disconnected diagrams drop out when we consider S−1: they

correspond to the 1. In the end, we’re interested in the fully connected diagrams. There is

a generating functional for them. (N.B. sometimes people reverse the names of what I’m

calling W and Z!. Peskin calls W → E.) Defining,

iW [J ] ≡ lnZ[J ]

iW [J ] is the generating functional for connected Green’s functions

G(n)
conn(x1, . . . xn) = h̄−1

n
∏

j=1

−iδ

δJ(xj)
iW [J ],

i.e.

iW [J ] = h̄

∞
∑

n=1

in

n!

∫

d4x1 . . . d4xnG(n)
conn(x1, . . . xn)J(x1) . . . J(xn).

In momentum space, we can write:

iW [J ] = h̄

∞
∑

n=1

in

n!

∫

d4k1

(2π)4
. . .

d4kn

(2π)4
J̃(−k1) . . . J̃(−kn)G̃c(k1, . . . kn).

• Examples, to illustrate how iW [J ] ≡ lnZ[J ] gives the connected diagrams. First

−i
δiW

δJ
=

1

Z[J ]

δZ[J ]

δJ(x)
= 〈φ(x)〉J .

(−i)2
δ2

δJ(x)δJ(y)
(iW ) = 〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J .

Note that 〈φ(x)φ(y)〉 has two types of contributions, connected and disconnected; the

2nd term precisely cancels off the disconnected ones. Similarly δW/δJ3 has terms like
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〈φφφ〉−〈φφ〉〈φ〉+2〈φ〉〈φ〉〈φ〉, which give precisely 〈φφφ〉connected. Can prove by induction

that the log in W properly subtracts away all non-connected diagrams!

• Will later discuss LSZ: how to relate Green’s functions to S-matrix elements (and

hence physical observables). Will see there that only connected diagrams contribute; this

is why W is useful.

• Let’s write

eiW [J ] = N

∫

[dφ]e
i

h̄

(

S[φ]+
∫

Jφ
)

,

(here we rescaled J by factor of 1/h̄ compared with before).

• Suppose diagram has I internal lines, V vertices, L loops. Connected graphs have

L = I − V + 1. Graphs go like h̄−V h̄I = h̄L−1. So W [J ] = W−1h̄
−1 + W0 + h̄W1 + . . .,

where W−1 are tree-graphs (no loops), W0 gives the 1-loop graphs, etc.

• Example: free Klein Gordon theory. We found Z[J ] above. Then

W [J ] = i1
2 h̄−1

∫

d4x

∫

d4yJ(X)DF (x − y)J(y).

(Rescaled source J compared with before.)

We see that the only connected Green’s function in this case is the 2-point function:

G
(2)
free(x, y) ≡ G(x − y) = h̄DF (x − y).

In an interacting theory, like λφ4,

G(2)(x, y) = h̄DF (x − y) + O(λ) corrections.

• Emphasize that tree graphs are classical. Example: consider L = 1
2
∂µφ∂µφ −

1
2m2φ2 − 1

4!λφ4 + φJ , with the source term J . The classical field EOM is

(∂µ∂µ + m2)φc = −
1

3!
λφ3

c + J(x).

We can solve this classically to zero-th order in λ as

φ(0)
c (x) =

∫

d4yDF (x − y)iJ(y),

where (∂µ∂µ +m2)DF (x− y) = −iδ(x− y). To solve to next order in λ, we plug this back

into the above:

φ(1)
c (x) = φ(0)

c (x) − i
1

3!
λ

∫

d4yDF (x − y)φ(0)
c (y)3
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Continue this way, this can be represented as a sum of tree-level diagrams, with one φ and

different numbers of J ’s on the external legs. This is perturbation theory for the classical

field theory.

• Examples of diagrams contributing to G
(n)
conn for n = 2, 4, 6, in λφ4.

• We have seen that the loop expansion is an expansion in powers of h̄, since diagrams

go like h̄L−1. Question: are we expanding in h̄ (loops), or in powers of the small coupling

constants, or both? Answer: it’s generally the same expansion. Consider e.g. λφr interac-

tion. Then a connected diagram with E external lines (amputating their propagators) and

I internal lines and V vertices is ∼ h̄I−V λV . Now we use L = I − V + 1 and E + 2I = rV

(conservation of ends of the lines) to get that the diagram is ∼
(

h̄λ2/(r−2)
)L−1

λE/(r−2),

so for fixed E the loop expansion is an expansion in powers of the effective coupling

α ∼ h̄λ2/r−2.
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