1/15/09 Lecture 5 outline

e Last time:
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where N is an irrelevant normalization factor (independent of J). Correspondingly, the

green’s functions are given by
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(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t
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depend specifically on the Green’s function.)

e Tllustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G2
and G® in \¢* theory. The functional integral accounts for all the Feynman diagrammer;
even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials. E.g.
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etc.
Hlustrate Z[.J] computation of various G™ for Vi, = %gbg’ theory, connecting to the

diagrams.



