
1/7/09 Lecture 2 outline

• Last time: For particles, consider the kernal of the time evolution operator

U(qa, qb;T ) = 〈qb|e
−iHT/h̄|qa〉.

Satisfies SE

ih̄∂TU = HU.

Feynman:

U(qa, qb;T ) =

∫
[dq(t)]e−S[x(t)]/h̄.

We showed how to derive this result from the operator description of QM by introducing

lots of complete sets of position and momentum eigenstates, at infinitesimal time slices.

• Likewise, the same derivation leads to e.g.

〈q4, t4|T q̂(t3)q̂(t2)|q1, t1〉 =

∫
[dq(t)]q(t3)q(t2)e

iS/h̄,

where the integral is over all paths, with endpoints at (q1, t1) and (q4, t4).

Note that the LHS involves time ordered operators, while the RHS has a functional

integral, which does not involve operators (so there is no time ordering). The fact that

the time ordering comes out on the LHS is good, since we already reviewed last time that

we’ll need that for using the LSZ formula to compute quantum field theory amplitudes.

• Computation. Integral can be broken into time slices, as way to define it. E.g. free

particle
(
−im

2πh̄ε

)N/2 ∫ N−1∏

i=1

dxi exp[
im

2h̄ε

N∑

i=1

(xi − xi−1)
2]

Where we take ε→ 0 and N → ∞, with Nε = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation):
∫

∞

−∞

dφ exp(iaφ2) =

√
iπ

a
.

where we analytically continued from the case of an ordinary gaussian integral. Think of

a as being complex. Then the integral converges for Im(a) > 0, since then it’s damped.

To justify the above, for real a, we need the integral to be slightly damped, not just purely

oscillating. To get this, take a→ a+ iε, with ε > 0, and then take ε→ 0+.
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After n− 1 steps, get integral:

(
2πih̄nε

m

)
−1/2

exp[
m

2πih̄nε
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(
2πih̄T

m

)
−1/2

exp[im(xb − xa)2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)

Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
−

2m2

2h̄T
≈
mxλ

h̄T
= pλ/h̄.

Gives p = h̄k.

Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can show

p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb). Agrees

with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• Nice application: Aharonov-Bohm. Recall L = 1
2m~̇x

2
+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮

~A cot d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields).
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