
1/5/09 Lecture outline

• We’ll focus for a while on scalar field theory, e.g. L = 1
2∂µφ∂

µφ − V (φ), with e.g.

V (φ) = 1
2m

2φ2 + Vint(φ), with e.g. Vint(φ) = 1
4!λφ

4.

• Last quarter you learned canonical quantization. The field φ(x) is analogous to q(t)

in QM (indeed, QM is field theory in d = 1 dimension), and its conjugate momentum is

Π = ∂L/∂φ̇. These are operators, with equal time commutators

[φ(t, ~x),Π(t, ~x′)] = ih̄δ3(~x− ~x′).

We’ll usually set h̄ = 1, aside from occasionally making it explicit to emphasize some

physics. It’s often more convenient to work in momentum space,

φ(x) =

∫

d3k

(2π)22ω
[a(k)e−ikx + a†(k)eikx]

and then the canonical quantization rules imply that

[a(k), a†(k′)] = (2π)22ωδ3(~k − ~k′),

with others vanishing. Creation and annihilation operators, act on |0〉, with a(~k)|0〉 = 0

and a†(k)|〉 = |k〉. Can create a packet with momentum localized around ~k1 via a†1|0〉,

with a†1 =
∫

d3kf1(k)a
†(k) and e.g. f1(k) a gaussian centered around ~k1. • Consider

scattering n incoming particles into n′ outgoing ones: |i〉 = limt→−∞ a†1(t) . . . a
†
n(t)|0〉

and |f〉 = limt→+∞ a†1′(t) . . . a
†
n′(t)|0〉. The scattering amplitude is the S-matrix element

〈f |S|i〈. Taking the initial and final states to differ, we’ll just write this as

〈f |i〉 = 〈0|Ta1′ . . . an′a†1 . . . a
†
n|0〉.

Now use

a†1(∞) − a†1(−∞) =

∫ ∞

−∞

dt∂0a
†
1(t) = −i

∫

d3~kf1(~k)

∫

d4xe−ikx(−∂2 +m2)φ(x),

where the steps needed for the 2nd equality can be found in full detail in e.g. Srednicki.

Using this we obtain

〈f |i〉 = 〈k1′ . . . kn′ |k1 . . . kn〉

= in+n′

n′

∏

j′=1

∫

d4x′je
ik′

jx′

j (∂2
j′ +m2)

n
∏

j=1

e−ikjxj (∂2
j +m2)Gn+n′(x1 . . . xn, x1′ . . . xn′),

(1)
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where

Gn+n′(x1 . . . xn, x1′ . . . xn′) ≡ 〈0|Tφ(x1′) . . . φ(xn′)φ(x1) . . . φ(xn)|0〉. (2)

This is the LSZ formula, which we’ll discuss further later. So to compute scattering

amplitudes, and thus cross sections and decay rates etc, we just need to compute the

above Green’s functions, involving time ordered products of fields.

• This is also expressed as Dyson’s formula, and recall also Wick’s theorem:

U(t2, t1) = T exp(−i

∫ t2

t1

Hint(t
′)dt′),

T (φ1 . . . φn) =: φ1 . . . φn : + : all contractions :

This is nicely expressed in terms of Feynman diagams.

• Our first topic is the Feynman path integral. Gives another way to quantize particles,

and fields. For particles, consider time evolution operator

U(xa, xb;T ) = 〈xb|e
−iHT/h̄|xa〉.

Satisfies SE

ih̄∂TU = HU.

Feynman:

U(xa, xb;T ) =

∫

[dx(t)]e−S[x(t)]/h̄.

Integral can be broken into time slices, as way to define it. Discuss how to derive this

formula from the usual description of QM with operators, by introducing the time slices

and a complete set of q and p eigenstates at each step.

E.g. free particle

(

−im

2πh̄ε

)N/2 ∫ N−1
∏

i=1

dxi exp[
im

2h̄ε

N
∑

i=1

(xi − xi−1)
2]

Where we take ε→ 0 and N → ∞, with Nε = T held fixed.

Do integral in steps. After n− 1 steps, get integral

(
2πih̄nε

m
)−1/2 exp[

m

2ih̄nε
(xn − x0)

2].

So final answer is

U(b, a) = [
2πih̄T

m
]−1/2 exp[im(xb − xa)2/2h̄T ].
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Plot this as a function of x = (xb − xa): lots of oscillations. For large x, nearly constant

wavelength λ, where

2π =
m(x+ λ)2

2h̄T
−
mx2

2h̄t
≈
mxλ

h̄T
.

Gives p = h̄k! More generally, get k = h̄−1p with p = ∂S/∂xb. Can show p = ∂L/∂ẋ =

∂Scl/∂xb. So recover ψ ∼ eipx/h̄. Can also recover ψ ∼ e−iωT , with ω = −h̄−1∂Scl/∂tb.

Agrees with E = h̄ω, since E = −∂Scl/∂tb.

Generalization to quantum field theory is immediate:

〈φb(~x, T )|e−iHT |φa(~x, 0)〉 =

∫

[dφ]eiS/h̄ S =

∫

d4xL.

This is then used to compute Green’s functions:

〈Ω|T

n
∏

i=1

φH(xi)|Ω〉 = Z−1
0

∫

[dφ]

n
∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄).
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