Homework 1, Due Jan. 17, 2008

- 1. Recall the QM discussion. The position is ϕ^i , with $i = 1...D$. The momentum is Π_i . Let $\mathcal O$ be an arbitrary function of these variables. Suppose operator A acts on O as $[A, O] = -A^dO$, where A^d is a differential operator (derivatives w.r.t. ϕ^i and Π_j). Suppose that there are operators B and C, with $[B, \mathcal{O}] = -B^d\mathcal{O}$, and $[C, \mathcal{O}] = -C^d \mathcal{O}$. Show that $[A, B] = C$ implies $[A^d, B^d] = C^d$, but that this would not have worked without the minus signs. (As a concrete realization of this, you can think of $[L_x, L_y] = i\hbar L_z$, with $L_z^d = i\hbar \frac{\partial}{\partial \phi}$ and similar standard expressions for L_x^d and L_y^d .)
- 2. Recall $N = 2$ SQM from class, with

$$
\theta = \frac{1}{\sqrt{2}}(\theta^1 + i\theta^2) \qquad ; \qquad \bar{\theta} = \frac{1}{\sqrt{2}}(\theta^1 - i\theta^2)
$$

\n
$$
D = \frac{1}{\sqrt{2}}(D_1 - iD_2) = \partial_{\theta} - i\bar{\theta}\partial_t \qquad ; \qquad \bar{D} = \frac{1}{\sqrt{2}}(D_1 + iD_2) = \partial_{\bar{\theta}} - i\theta\partial_t \qquad (1)
$$

\n
$$
Q^d = \frac{1}{\sqrt{2}}(Q_1^d - iQ_2^d) = \partial_{\theta} + i\bar{\theta}\partial_t \qquad ; \qquad \bar{Q}^d = \frac{1}{\sqrt{2}}(Q_1^d + iQ_2^d) = \partial_{\bar{\theta}} + i\theta\partial_t
$$

Consider the QM lagrangian

$$
L = \int d^2\theta \left(\frac{1}{2}D\Phi \bar{D}\Phi + W(\Phi)\right).
$$

Here $d^2\theta \equiv d\bar{\theta}d\theta$, so $\int d^2\theta \theta \bar{\theta} = +1$. Take Φ to be a real superfield

$$
\Phi = \phi + i\theta\psi + i\bar{\theta}\psi^{\dagger} + \theta\bar{\theta}F.
$$

(a) Compute the Lagrangian in components.

(b) Notice that ϕ and ψ have usual looking kinetic terms, but F has no kinetic term. Such non-dynamical **auxiliary fields**, like F , are needed for implementing susy off shell. On shell, they can simply be eliminated by their equations of motion: $\partial L/\partial F = 0$. Show that, upon eliminating the F, the potential for the field ϕ is $V(\phi) = \frac{1}{2}(W')^2$.

3. Now consider the QM lagrangian

$$
\mathcal{L} = \int d^2\theta \frac{1}{4} \mathcal{F} \mathcal{F}^{\dagger} + \int d\theta W(\Phi) \mathcal{F} + \int d\bar{\theta} \bar{W}(\Phi^{\dagger}) \mathcal{F}^{\dagger},
$$

where Φ and $\mathcal F$ are chiral $N = 2$ scalar and fermionic superfields, so $\bar{D}\Phi = \bar{D}\mathcal F = 0$. Recall from class that chiral superfields can be written as

$$
\Phi(y,\theta) = \phi(y) + \sqrt{2}\theta\psi(y) = \phi(t) + \sqrt{2}\theta\psi(t) - i\theta\overline{\theta}\dot{\phi}(t)
$$

$$
\mathcal{F}(y,\theta) = \chi(y) + \sqrt{2}\theta F(y) = \chi(t) + \sqrt{2}\theta F(t) - i\theta\overline{\theta}\dot{\chi}
$$

where ϕ and ψ and F are complex, and where $y \equiv t - i\theta \bar{\theta}$. The difference between Φ and $\mathcal F$ is that the first component ϕ is bosonic, whereas χ is fermionic. The $\mathcal F^{\dagger}$ and Φ^{\dagger} are anti-chiral, i.e. annihilated by D, and can be expanded as

$$
\Phi^{\dagger}(\bar{y}, \bar{\theta}) = \phi^{\dagger}(\bar{y}) - \sqrt{2}\bar{\theta}\psi^{\dagger}(\bar{y}) = \phi^{\dagger}(t) - \sqrt{2}\bar{\theta}\psi^{\dagger}(t) + i\theta\bar{\theta}\dot{\phi}^{\dagger}(t)
$$

$$
\mathcal{F}^{\dagger}(\bar{y}, \bar{\theta}) = \chi^{\dagger}(\bar{y}) + \sqrt{2}\bar{\theta}F^{\dagger}(\bar{y}) = \chi^{\dagger}(t) + \sqrt{2}\bar{\theta}F^{\dagger}(t) + i\theta\bar{\theta}\dot{\chi}^{\dagger}(t)
$$

$$
\bar{y} \equiv t + i\theta\bar{\theta}
$$

(a) Using the fact that Q^d and \bar{Q}^d generate the supersymmetry transformations, verify that the above Lagrangian is invariant under susy for any *holomorphic* function $W(\Phi)$, i.e. it must satisfy the Cauchy-Riemann equations $\frac{\partial W(\Phi)}{\partial \Phi^{\dagger}} = 0$.

(b) Write out $\mathcal L$ in components. Eliminate the auxiliary fields, and verify that the scalar potential satisfies $V \geq 0$.

3. (From Argyres.) Show that conservation of a symmetric, traceless charge $Q^{\mu\nu}$, together with energy momentum conservation implies

$$
p_1^{\mu}p_1^{\nu}+p_2^{\mu}p_2^{\nu}=q_1^{\mu}q_1^{\nu}+q_2^{\mu}q_2^{\nu}
$$

for elastic scattering of two identical scalars with incoming momenta p_1 and p_2 and outgoing momenta q_1 and q_2 . Show that this implies that the scattering angle is zero.

- 4. Argyres susy 1996, exercise 2.2.
- 5. Argyres (1996) exercise 3.3.