
2/7/07 Lecture 9 outline

• Let’s consider the 1-loop term in Γ̃(2) for λφ4. Get

−iΠ′(p2) = (−iλ) 1
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+ more loops.

Now rotate to Euclidean space, d4k = id4kE ,
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2
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+ more loops.

Recall expression ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. For

D = 4, get Ω3 = 2π2, so
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.

Here Λ is a UV momentum cutoff. Result is quadratically (and also log) divergent as

Λ → ∞. The subject of renormalization is the physical interpretation of these divergences.

The first thing to do is to regulate them, as we did above with a momentum cutoff. There

are other ways to regulate. How one regulates is physically irrelevant. The physics is in

the renormalization interpretation of the regulated results, and at the end of the day the

choice of regulator doesn’t matter.

• Study more generally the degree of divergence of 1PI diagrams. Consider the general

form of Γ(n):

Γ(n)
∼

∫ L
∏
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I
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1
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For large k the integrand behaves as ∼ k4L−2I . Degree of UV divergence (superficially) is

D = 4L − 2I = 2I − 4V + 1 (recall that L = I − V + 1). Suppose interaction is φp, then

pV = 2I + n. E.g. for λφ4, p = 4, get D = 4 − n. For p = 6, write 4V4 + 6V6 = 2I + n,

get D = 4 − n + 2V6. The V4 vertex is renormalizable, the V6 is not. This is apparent

from powercounting of the dimension of the interaction. For λφ4, the UV divergent terms

are n = 2, 4. Higher n diagrams only have sub-divergences, which will be accounted for by

properly treating the n = 2 and n = 4 cases.

• Consider again the 1-loop term in Γ(2) for λφ4. Get

Π′(p2) = 1
2
λ

∫

d4kE

(2π)4
1

k2
E + m2

+ more loops.
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Let’s illustrate another, extremely popular, choice of regulator: dimensional regularization.

Suppose that we had D instead of 4 dimensions, then write

I ≡

∫

dDkE

(2π)D

1

k2
E + m2

=
ΩD−1

(2π)D

∫

∞

0
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1
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.

Again, ΩD−1 = 2πD/2/Γ(D/2) is the surface area of a unit sphere SD−1. Let u2 = m2y

I =
mD−2

2DπD/2Γ(D/2)

∫
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.

Now use (y − 1)−1 =
∫

∞

0
dte−t(y−1) and Γ(z) =

∫

∞

0
dte−ttz−1 to get

I =
mD−2

(4π)D/2
Γ(1 −

1
2D).

This blows up for D = 4, because Γ(1 −
1
2D) has a pole there. Recall Γ(z) has a simple

pole at z = 0, and also at all negative integer values of z.
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