2/5/07 Lecture 8 outline

• Last time:

$$
W[J] = \Gamma[\overline{\phi}] + \int d^4x J(x)\overline{\phi}(x).
$$

$$
\Gamma[\overline{\phi}] = W[J] - \int d^4x J(x)\overline{\phi}(x).
$$

 $\overline{\phi}(x)$ can be interpreted as the average of $\phi(x)$ in the presence of the source; sometimes called classical field:

$$
\overline{\phi}(x) = \frac{\delta W[J]}{\delta J(x)} = \frac{\langle 0 | \phi(x) | 0 \rangle_J}{\langle 0 | 0 \rangle_J}.
$$

The functional derivatives of $\Gamma[\overline{\phi}]$, upon setting $\overline{\phi} = 0$, give $\Gamma^{(n)}(x_1, \ldots x_n)$ • Recall $\mathcal{L} =$ 1 $\frac{1}{2}\partial_\mu\phi\partial^\mu\phi - \frac{1}{2}m^2\phi^2 - \frac{1}{4!}\lambda\phi^4 + \phi J$, with the source term J. The classical field EOM is

$$
(\partial_{\mu}\partial^{\mu} + m^2)\phi_c = -\frac{1}{3!}\lambda\phi_c^3 + J(x).
$$

As discussed last time, we can solve this in perturbation theory in λ , with only tree-level diagrams. The generating functional for tree-level diagrams is $W_c[J] = S[\phi_c] + \int d^4x J \phi_c$.

Again,

$$
\Gamma[\phi] = \frac{1}{\hbar} \left(S[\phi] + \mathcal{O}(\hbar) \right).
$$

The field $\overline{\phi}$ satisfies the same equation, up to order \hbar corrections:

$$
(\partial_{\mu}\partial^{\mu} + m^{2})\overline{\phi} = -\frac{1}{3!}\lambda \overline{\phi}^{3} + J(x) + \mathcal{O}(\hbar).
$$

So, at the classical level, $\phi_c = \overline{\phi}$. But $\overline{\phi}$ includes the quantum loop corrections.

• Draw the pictures of the loop diagrams, as included in tree-level diagrams, assembled from the 1PI building blocks.

• One-loop effective potential for $\lambda \phi^4$. The effective potential is found from $\Gamma[\phi]$, keeping the terms with no derivatives. Find

$$
V_1(\phi) = i \sum_{n=1}^{\infty} \frac{1}{2n} \int \frac{d^4k}{(2\pi)^4} \left(\lambda \frac{1}{k^2 - m^2 + i\epsilon} \frac{\phi^2}{2} \right)^n
$$

= $\frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \ln \left(1 + \frac{\frac{1}{2}\lambda \phi^2}{k_E^2 + m^2} \right)$

(S. Coleman and E. Weinberg.) Symmetry factors: $1/n!$ not all the way cancelled, because of Z_n rotation symmetry, and reflection, gives $1/2n$. At each vertex, can exchange external lines, so $1/4!$ not all the way cancelled, leads to $1/2$ for each vertex. Still have to explain how to handle k_E integral. We'll come back to this later.