
1/24/07 Lecture 5 outline

• We got the functional integral to converge via the iε. There is another way, which

is often very useful: Wick rotate to Euclidean space. The k0 momentum integral, like

the one above, can be analytically continued, as long as no poles are crossed. This allows

continuation to k0 = ik4, with k4 real. Then k2 = −k2
E , and d4k = id4kE . To avoid

having eikx blow up anywhere, we also continue time: x0 = −ix4, so d4x = −id4xE . The

Feynman propagator, in Euclidean space, is

∆E(x) =

∫

d4kE

(2π)4
e−ikx 1

k2
E + m2

,

where we can now drop the iε, since it’s no longer needed. Note k2
E + m2 is never zero, so

the integrand never has a pole, and the solution ∆E is unique.

The action changes as S =
∫

d4x( 1
2∂φ∂φ − V ) = i

∫

d4xE( 1
2∂xE

φ∂xE
+ V ) = iSE ,

where SE looks like the energy now, SE = “H”! Then

∫

[dφ] exp[
i

h̄
S] →

∫

[dφ]e−
1

h̄
“H”

which is like the partition function of stat mech (as you saw in your HW)! (But here “H”

is like the Hamiltonian of a theory living in 4 spatial dimensions..). Note h̄ here appears

as does T (temperaure) there, connects intuition of quantum fluctuations with intuition of

thermal fluctuations!

It is sometimes useful to do all Feynman diagram computations in Euclidean space,

and analytically continue back to Minkowski at the end of the day. The Euclidean space

Feynman rules work like this: (k2
E + m2)−1 for each propagator, d4kE for each loop, and

−g for each vertex. Comparing with what we had before, we have dropped some factors

of i:

iL+V −I = i,

since (connected) diagrams have L = I − V + 1. So every diagram in the sum just differs

by a factor of i, so the sums work the same as before (no relative differences).

• For computing S-matrix elements, we will especially be interested in connected

Green’s functions. There are nice combinatoric formulae (you might have already seen

some last quarter?). E.g.

∑

all diagrams =
(

∑

“connected”
)

· exp(
∑

disconnected vacuum bubbles).
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And the vacuum bubble diagrams cancel. We write “connected” because for n > 2 point

functions there are still disconnected diagrams, connected to the external points, included

in this sum. But even those disconnected diagrams drop out when we consider S−1: they

correspond to the 1. In the end, we’re interested in the fully connected diagrams. It turns

out that there is a generating functional for them. (N.B. sometimes people reverse the

names of what I’m calling W and Z!. Peskin calls W → E.) Defining,

iW [J ] ≡ lnZ[J ]

iW [J ] is the generating functional for connected Green’s functions

G(n)
conn(x1, . . . xn) = h̄−1

n
∏

j=1

−iδ

δJ(xj)
iW [J ],

i.e.

iW [J ] = h̄
∞
∑

n=1

in

n!

∫

d4x1 . . . d4xnG(n)
conn(x1, . . . xn)J(x1) . . . J(xn).

In momentum space, we can write:

iW [J ] = h̄

∞
∑

n=1

in

n!

∫

d4k1

(2π)4
. . .

d4kn

(2π)4
J̃(−k1) . . . J̃(−kn)G̃c(k1, . . . kn).

• Examples, to illustrate how iW [J ] ≡ lnZ[J ] gives the connected diagrams. First

−i
δiW

δJ
=

1

Z[J ]

δZ[J ]

δJ(x)
= 〈φ(x)〉J .

(−i)2
δ2

δJ(x)δJ(y)
(iW ) = 〈φ(x)φ(y)〉J − 〈φ(x)〉J〈φ(y)〉J .

Note that 〈φ(x)φ(y)〉 has two types of contributions, connected and disconnected; the

2nd term precisely cancels off the disconnected ones. Similarly δW/δJ3 has terms like

〈φφφ〉−〈φφ〉〈φ〉+2〈φ〉〈φ〉〈φ〉, which give precisely 〈φφφ〉connected. Can prove by induction

that the log in W properly subtracts away all non-connected diagrams!

• Will later discuss LSZ: how to relate Green’s functions to S-matrix elements (and

hence physical observables). Will see there that only connected diagrams contribute; this

is why W is useful.
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