
1/22/07 Lecture 4 outline
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where N is an irrelevant normalization factor (independent of J). Correspondingly, the

green’s functions are given by
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(The denominator (in both lines) cancels off the vacuum bubble diagrams, which don’t

depend specifically on the Green’s function.)

• Illustrate the above formulae, and relation to Feynman diagrams, e.g. G(1), G(2)

and G(4) in λφ4 theory. The functional integral accounts for all the Feynman diagrammer;

even symmetry factors etc. come out simply from the derivatives w.r.t. the sources, and

the expanding the exponentials.

• Recall story of cancellation of bubble diagrams. Recall for computing S-matrix

elements, we will especially be interested in connected Green’s functions. There are nice

combinatoric formulae (you might have already seen some last quarter?). E.g.
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And the vacuum bubble diagrams cancel. We write “connected” because for n > 2 point

functions there are still disconnected diagrams, connected to the external points, included

in this sum.
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