
3/16/07 Lecture 20 outline

• Bare and renormalized fields, and counterterms. ψB = Z
1/2
2 ψR, Aµ

B = Z
1/2
3 Aµ

R,

eBZ2Z
1/2
3 = eRZ1. LB = LR + Lc.t..

LR = −1

4
FRµνF

µν
R + ψ̄R(i/∂ − eR /AR −mR)ψR,

Lct = −1

4
δ3(FRµν)2 + ψ̄R(iδ2/∂ − δ1eR /AR − δm)ψR.

Where δ1 = Z1 − 1, δ2 = Z2 − 1, δ3 = Z3 − 1, and δm = Z2m0 −m. We have

eBZ2Z
1/2
3 = eRZ1,

where the Z1 will cancel the Z−1
1 in Γµ(q2 = 0) = Z−1

1 γµ.

• Gauge invariance requires Z1 = Z2, since then δ1 = δ2 and the counterterm pieces

have the same gauge invariance. Sure enough, direct calculation shows Z1 = Z2 (to

all orders in perturbation, theory, and exactly)! So eR =
√
Z3e0 = ephys. Shows that

renormalized charge is same for all species (e.g. electron and muon and anti-proton all

have exactly the same effective charge).

• Note that ∆(eA) = 1, gives ∆(e) = 2 − 1
2
D = ε/2, so

αB = µεZ−1
3 αR.

Take d/d lnµ and use dαB/d lnµ = 0 to get (just as we did for λφ4)

0 = εαZ−1
3 + β(α, ε)Z−1

3 + β(α, ε)α
d

dα
Z−1

3 .

where β(α, ε) = dα/d lnµ. To have a smooth ε → 0 limit, we need β(α, ε) = −εα + β(α),

and then

β(α) = α2 da1

dλ
.

• Now let us compute a1. Z
−1
3 = 1 − Π(0), so a1 is minus the coefficient of the 1/ε

pole in Π(0). Let us compute it.

• Loop correction to photon propagator, from virtual electron/positron loop:

iΠµν
2 (p) = i(p2gµν − pµpν)Π(p2).
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Z3 = (1 − Π(0))−1. To 1-loop, we take δ3 = Π(0). To one-loop, find (See Peskin p. 251

for details)

Πµν
2 (p) = (p2gµν − pµpν)(−8e2/(4π)D/2)

∫ 1

0

dxx(1 − x)Γ(2 − 1
2D)/∆2−

1
2D,

where ∆ = m2
e − x(1 − x)p2. We only care about the ε−1 term. Result to one loop:

Π(0) = −α
π
ε−1 2

3
+ finite.

in MS, choose δ3 to cancel the 1/ε term only, so δ3 = −α
π ε

−1 2
3+ higher loop. Finally, we

have Z−1
3 = 1 +

∑
k akε

−k, with a1 = 2α2/3π to one loop.

This then gives

β(α) =
dα

d lnµ
= α2 da1

dλ
=

2α2

3π
+ higher loops.

• The beta function is positive. Qualitatively similar to λφ4: the theory is not asymp-

totically free. Integrate 1-loop beta function:

α−1(µ) = − 2

3π
ln(

µ

Λ
).

Makes sense only for µ < Λ, i.e. in the IR. Λ is a UV cutoff. Get α → ∞ as µ → Λ; this

is the Landau pole. Looks bad, but we’ll see the the energy scale where it blows up is so

fantastically large that we don’t need to worry (something new should fix it in the UV,

e.g. grand unification can do the job). It does not run to zero in the IR, because there are

no massless charged particles. It runs toward zero until it gets to the energy scale of the

lightest charged particle, me = 0.5MeV , and then it stops running. So 137 = 3
3π ln(Λ/me).

Gives Λ = me exp(137π), which too huge to worry about the apparent Landau pole there.

(Other charged particles will bring the scale of Λ down to Λ = me exp(137π/Nf) where

Nf is the effective number of charged particles, but it’s still huge.)

Picture of vacuum polarization, of electron-positron pairs.

• QED vs QED. In QED, we have gauge invariance ψ → eief(x)ψ, local U(1) transfor-

mations. Generalize to local SU(Nc) gauge transformations: ψ → exp(igT afa(x))ψ, where

T a are traceless, Hermitian Nc×Nc matrices (a = 1 . . .N2
c −1), and ψ is a Nc column vec-

tor. Gauge conserved color charge. Need covariant derivatives, ∂µ → Dµ = ∂µ + igAa
µT

a,

i.e. introduce gauge fields, “gluons”. The Ta matrices do not commute, [T a, T b] = ifabcT
c:
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the group is “non-Abelian.” The effect of this is that the Aa
µ kinetic terms are more compli-

cated. The physics of this is that the gluons carry color charge (unlike the photon, which

carries no electric charge). Get 3 and 4 gluon interaction diagrams. Added contributions

to 1-loop correction to gluon propagator. Get finally

β(α) =
α2

6π
(−11Nc + 2Nf ) .

The flavors contribute positively, as in QED. But the colors contribute negatively: they

anti-screen charges! So the beta function can be negative, if 11Nc > 2Nf . This is asymp-

totic freedom. Integrating the 1-loop result gives

α(µ)−1 =
(11Nc − 2Nf )

6π
ln(

µ

Λ
).

To have α > 0, we need µ > Λ (opposite from QED). Note α(µ → ∞) → 0, weak in

UV = asymptotic freedom. Explains successes of parton model (quarks) for high energy

scattering. For QCD, Nc = 3, and Nf = 6. For energies below the top and bottom mass,

use Neff
f = 4. Observe e.g. α(100GeV ) ∼ 0.1, so Λ ∼ 200MeV .

On the other hand, α → ∞ for µ → Λ: forces are strong in IR, below scale Λ. Can

explain confinement of quarks (there is a million dollar prize, waiting to be collected, if

you prove it in detail)!
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