
1/8/07 Lecture 2 outline

• Computation. Integral can be broken into time slices, as way to define it. E.g. free

particle
(

−im

2πh̄ε

)N/2 ∫ N−1
∏

i=1

dxi exp[
im

2h̄ε

N
∑

i=1

(xi − xi−1)
2]

Where we take ε→ 0 and N → ∞, with Nε = T held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic

continuation). After n− 1 steps, get integral:

(

2πih̄nε

m

)

−1/2

exp[
m

2πih̄nε
(xn − x0)

2].

So the final answer is

U(xb, xa;T ) =

(

2πih̄T

m

)

−1/2

exp[im(xb − xa)2/2h̄T ].

Note that the exponent is eiScl/h̄, where Scl is the classical action for the classical

path with these boundary conditions. (More generally, get a similar factor of eiScl/h̄ for

interacting theories, from evaluating path integral using stationary phase.)

Plot phase of Uas a function of x = xb − xa, fixed T , Lots of oscillates. For large x,

nearly constant wavelength λ, with

2π =
m(x+ λ)2

2h̄T
−

2m2

2h̄T
≈
mxλ

h̄T
= pλ/h̄.

Gives p = h̄k! Recover ψ ∼ eipx/h̄. More generally, get p = h̄−1k, with p = ∂Scl/∂xb (can

show p = ∂L/∂ẋ = ∂Scl/∂xb. Can also recover ψ ∼ e−iωT , with ω = h̄−1(−∂Scl/∂tb).

Agrees with E = h̄ω, since E = pẋ− L = −∂Scl/∂tb.

• Nice application: Aharonov-Bohm. Recall L = 1

2
m~̇x

2

+ q~̇x · ~A − qφ. Solenoid with

B 6= 0 inside, and B = 0 outside. Phase difference in wavefunctions is

ei∆S/h̄ = eiq
∮

~A cot d~x/h̄ = eiqΦ/h̄.

Aside on Dirac quantization for magnetic monopoles.

• The nice thing about the path integral is that it generalizes immediately to quantum

fields, and for that matter to all types (scalars, fermions, gauge fields). Consider first scalars

fields
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• Compute Green’s functions via

〈0|T
n

∏

i=1

φH(xi)|0〉/〈0|0〉 = Z−1

0

∫

[dφ]
n

∏

i=1

φ(xi) exp(iS/h̄),

with Z0 =
∫

[dφ] exp(iS/h̄).

Ordinary (non functional), multi-dimensional gaussian integrals:

N
∏

i=1

dφi exp(−(φ,Bφ)) = πN/2(detB)−1/2,

where (φ,Bφ) =
∑

i φi(Bφ)i and (Bφ)i =
∑

j Bijφj . The integral was evaluated by

changing variables in the dφi, to the eigenvectors of the symmetric matrix B; then the

integrals decouple into a product of simple 1-variable gaussians.

By analogy, consider Z0 for a free Klein Gordon field:

Z0 =

∫

[dφ]eiS/h̄ S = 1

2

∫

d4xφ(x)(−∂2 −m2)φ(x),

where we integrated by parts and dropped a surface term. The analogy with the above

has B ∼ −∂2 −m2, and (φ,Bφ) ∼ S, so

Z0 = const(det(−∂2 − m2))−1/2.

We will have to explain how to handle the functional determinant, det(−∂2 −m2)
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