1/8/07 Lecture 2 outline

• Computation. Integral can be broken into time slices, as way to define it. E.g. free particle

$$\left(\frac{-im}{2\pi\hbar\epsilon}\right)^{N/2} \int \prod_{i=1}^{N-1} dx_i \exp\left[\frac{im}{2\hbar\epsilon} \sum_{i=1}^{N} (x_i - x_{i-1})^2\right]$$

Where we take $\epsilon \to 0$ and $N \to \infty$, with $N\epsilon = T$ held fixed.

Do integral in steps. Apply expression for real gaussian integral (valid: analytic continuation). After n-1 steps, get integral:

$$\left(\frac{2\pi i\hbar n\epsilon}{m}\right)^{-1/2} \exp\left[\frac{m}{2\pi i\hbar n\epsilon}(x_n-x_0)^2\right].$$

So the final answer is

$$U(x_b, x_a; T) = \left(\frac{2\pi i\hbar T}{m}\right)^{-1/2} \exp[im(x_b - x_a)^2/2\hbar T].$$

Note that the exponent is $e^{iS_{cl}/\hbar}$, where S_{cl} is the classical action for the classical path with these boundary conditions. (More generally, get a similar factor of $e^{iS_{cl}/\hbar}$ for interacting theories, from evaluating path integral using stationary phase.)

Plot phase of U as a function of $x = x_b - x_a$, fixed T, Lots of oscillates. For large x, nearly constant wavelength λ , with

$$2\pi = \frac{m(x+\lambda)^2}{2\hbar T} - \frac{2m^2}{2\hbar T} \approx \frac{mx\lambda}{\hbar T} = p\lambda/\hbar.$$

Gives $p = \hbar k!$ Recover $\psi \sim e^{ipx/\hbar}$. More generally, get $p = \hbar^{-1}k$, with $p = \partial S_{cl}/\partial x_b$ (can show $p = \partial L/\partial \dot{x} = \partial S_{cl}/\partial x_b$. Can also recover $\psi \sim e^{-i\omega T}$, with $\omega = \hbar^{-1}(-\partial S_{cl}/\partial t_b)$. Agrees with $E = \hbar \omega$, since $E = p\dot{x} - L = -\partial S_{cl}/\partial t_b$.

• Nice application: Aharonov-Bohm. Recall $L = \frac{1}{2}m\dot{\vec{x}}^2 + q\dot{\vec{x}}\cdot\vec{A} - q\phi$. Solenoid with $B \neq 0$ inside, and B = 0 outside. Phase difference in wavefunctions is

$$e^{i\Delta S/\hbar} = e^{iq \oint \vec{A} \cot d\vec{x}/\hbar} = e^{iq\Phi/\hbar}.$$

Aside on Dirac quantization for magnetic monopoles.

• The nice thing about the path integral is that it generalizes immediately to quantum fields, and for that matter to all types (scalars, fermions, gauge fields). Consider first scalars fields

• Compute Green's functions via

$$\langle 0|T\prod_{i=1}^{n}\phi_{H}(x_{i})|0\rangle/\langle 0|0\rangle = Z_{0}^{-1}\int [d\phi]\prod_{i=1}^{n}\phi(x_{i})\exp(iS/\hbar),$$

with $Z_0 = \int [d\phi] \exp(iS/\hbar)$.

Ordinary (non functional), multi-dimensional gaussian integrals:

$$\prod_{i=1}^{N} d\phi_i \exp(-(\phi, B\phi)) = \pi^{N/2} (\det B)^{-1/2},$$

where $(\phi, B\phi) = \sum_i \phi_i(B\phi)_i$ and $(B\phi)_i = \sum_j B_{ij}\phi_j$. The integral was evaluated by changing variables in the $d\phi_i$, to the eigenvectors of the symmetric matrix B; then the integrals decouple into a product of simple 1-variable gaussians.

By analogy, consider Z_0 for a free Klein Gordon field:

$$Z_0 = \int [d\phi] e^{iS/\hbar} \qquad S = \frac{1}{2} \int d^4x \phi(x) (-\partial^2 - m^2) \phi(x),$$

where we integrated by parts and dropped a surface term. The analogy with the above has $B \sim -\partial^2 - m^2$, and $(\phi, B\phi) \sim S$, so

$$Z_0 = \text{const}(\det(-\partial^2 - \mathbf{m}^2))^{-1/2}.$$

We will have to explain how to handle the functional determinant, $\det(-\partial^2 - m^2)$