3/5/07 Lecture 16 outline

 \bullet Last time:

$$
\beta(\lambda) \equiv \frac{d}{d \ln \mu} \lambda_R
$$

$$
\gamma_{\phi} = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

$$
\gamma_m = \frac{d \ln m_R}{d \ln \mu}.
$$

$$
\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)
$$

$$
\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda}
$$

$$
\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + \mathcal{O}(\lambda^3).
$$

Integrating, this gives

$$
\lambda = \lambda_0 \left(1 - \frac{3}{16\pi^3} \lambda_0 \ln(\mu/\mu_0) \right)^{-1}.
$$

We similarly have

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2} \frac{d}{d \ln \mu} \ln Z_{\phi}
$$

where

$$
Z_{\phi} = 1 + \sum_{k} Z_{\phi}^{-k}(\lambda) \epsilon^{-k}.
$$

So

$$
\gamma_{\phi}(\lambda,\epsilon) = \frac{1}{2}\beta(\lambda,\epsilon)\frac{d}{d\lambda}\ln Z_{\phi}.
$$

Using $\beta(\lambda, \epsilon) = -\epsilon \lambda + \beta(\lambda)$, we get

$$
\gamma_{\phi} = -\frac{1}{2}\lambda \frac{d}{d\lambda} Z_{\phi}^{(1)}.
$$

We similarly have $m_B^2 = (m^2 + \delta_{m^2})Z_{\phi}^{-1} \equiv Z_m m^2$ and

$$
\gamma_m(\lambda) = \frac{1}{2} \frac{d \ln m^2}{d \ln \mu} = -\frac{1}{2} \frac{d \ln Z_m}{d \ln \mu} = -\frac{1}{2} \beta \frac{d \ln Z_m}{d \lambda} = \frac{1}{2} \lambda \frac{d Z_m^{(1)}}{d \lambda}
$$

where $Z_m^{(1)}$ means the coefficient of $1/\epsilon$. In all these cases, only the coefficient of $1/\epsilon$ matters.

In particular, for $\lambda \phi^4$ we have

$$
\gamma_{\phi} = \frac{1}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots \qquad \gamma_m = \frac{1}{2} \frac{\lambda}{16\pi^2} - \frac{5}{12} \frac{\lambda^2}{(16\pi^2)^2} + \dots
$$

For any gauge invariant field ϕ , we always have $\gamma_{\phi} \geq 0$, where $\gamma_{\phi} = 0$ iff it is a free field. This follows from the spectral decomposition result that $Z \leq 1$.

• Note: $\beta > 0$ means the coupling is small in the IR, and large in the UV. Such theories are "not asymptotically free" or are "IR free." Most theories are like this, e.g. $\lambda \phi^4$ (e.g. the Higgs coupling), QED, Yukawa interactions. Picture for QED of vacuum polarization, screening the bare charge. If $\beta < 0$, then the coupling is small in the UV, and large in the IR. Such theories are "asymptotically free;" only non-Abelian gauge theories, like QCD, are like that. Means vacuum anti-screens charges.

• QED: one loop beta function, $\beta(e) = e^3/12\pi^2$, leads to $\alpha_{eff}(\mu)^{-1} = \alpha_0^{-1}$ 1 $\frac{1}{6\pi}$ log(μ/μ_0). QCD: one loop beta function $\beta(g) = -Cg^3/2$, leads to $g^{-2}(\mu) = g_0^{-2}$ + $C \log(\mu/\mu_0)$.

• Pictures of RG flows.

• New topic, functional integral for fermions and gauge fields. Path integral of same, general form. Need to understand some new issues with integrations. Fermions first. Grassmann number integrals, $\int d\theta (A + B\theta) = B$. Complex θ , θ^* , $\int d\theta^* d\theta \exp(-\theta^* b\theta) = b$. $\prod_i \int d\theta_i^* d\theta_i \exp(-\theta_i^* B_{ij} \theta_j) = \det B. \prod_i \int d\theta_i^* d\theta_i \exp(-\theta_i^* B_{ij} \theta_j) \theta_k \theta_i^* = (B^{-1})_{kl} \det B.$