
2/28/07 Lecture 14 outline

• Last time: LSZ

〈p1 . . .pn|S|k1 . . .km〉 = lim
o.s

n
∏

i=1

(p2
i − m2

i )Z
−1/2
i

m
∏

j=1

(k2
j − m2

j )Z
−1/2
j G̃n+m(−pi, ki).

Here G̃n+m is the full n + m point Green’s function, including disconnected diagrams etc.

The limit is where we take the external particles on shell. In this limit, the p2
i − m2

i and

k2
j − m2

j prefactors all go to zero. These zeros kill everything on the RHS except for the

connected contributions to G̃. Accounting for the fact that we amputate the external

propagators, which go like iZi(p
2
i − m2

i )
−1, the above becomes

〈p1 . . .pn|S|k1 . . .km〉 = Z(n+m)/2G̃n+m
amp,conn,B(−pi, ki) = G̃n+m

amp,conn,R(−pi, kj)

This is the promised general relation between the amputated, connected Greens functions

(and in particular Γ̃) and S-matrix elements.

• Example from last quarter: tree-level contribution to the Compton effect, scattering

light off an electron. The S matrix element is given at tree-level by S = 1 + iT , where

〈f |iT |i〉 = i(2π)4δ4(kf + pf − ki + pi)Mfi

Mfi = −e2ū(pf , αf )

(

ε/f
1

/pi + /ki − m
ε/i + ε/i

1

/pi − /kf − m
ε/f

)

u(pi, αi).

More generally, the S-matrix element is given according to LSZ by the connected, ampu-

tated Greens functions. Note that it is not just the 1PI diagrams contributing (the above

example is a non-1PI contribution).

• Optical theorem. The S-matrix S = U(tf = ∞, ti = −∞) is unitary, S†S = 1.

Write S = 1 + iT , then get 2Im(T ) ≡ −i(T − T †) = T †T . Thus

−i(2π)4δ4(pf−pi)(Mfi−M∗
if ) =

∑

m

∏

i

∫

d3~ki

(2π)32Ei
MfmM∗

im(2π)4δ4(pf−pm)(2π)4δ4(pf−pi).

Take f = i, get

2ImMii =
∑

m

∫

dΠm|Mim|2,

where dΠm is the density of states for the process i → m. This is the optical theorem. It

relates the imaginary part of the forward scattering amplitude to the total cross section,

e.g.

ImM(k1, k2 → k1, k2) = 2Ecmpcmσtot(k1, k2 → anything).
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Recall that the imaginary part of amplitudes is discontinuous across the cut starting

at s = 4m2. So we can there relate

DiscM(s) = 2iImM(s) ∼

∫

dΠ |Mcih|
2
∼ σtot

where cih means cut in half.

Consider e.g. the 1-loop contribution to the 4-point amplitude in λφ4, in the s channel

M(1) = 1
2λ2

∫

d4kE

(2π)4
1

( 1
2
p + k)2 − m2 + iε

1

( 1
2
p − k)2 − m2 + iε

,

where p = p1 + p2. Recall that we evaluated this as (with s = p2)

λ2

32π2

(

2

ε
− γ + log

4πµ2

m2
+ A(s),

)

where

A(s) = 2 −
√

1 − 4m2/s log

(

√

1 − 4m2/s + 1
√

1 − 4m2/s − 1

)

.

The 1/ε term (together with some constants, depending on our scheme) is cancelled by

a counterterm diagram. The function A(s) remains. The threshold is where s = 4m2.

Below threshold, the amplitude is purely real. Above threshold, there is a discontinuous

imaginary part, with

DiscM(s) = 2iImM(s) ∼

∫

dΠ |Mcih|
2
∼ σtot

where cih means cut in half. The tree-level scattering amplitude comes from the imaginary

part of the one-loop amplitude.

• Let’s go back to

Γ̃
(n)
B (p1, . . . pn; λB, mB, ε) = Z

−n/2
φ Γ̃

(n)
R (p1, . . . pn; λR, mR, µ, ε).

For fixed physics, the LHS is some fixed quantity. The RHS depends on the renormal-

ization point µ and the scheme. The LHS does not! This leads to what is known as the

renormalization group equations, which state how the renormalized quantities must vary

with µ.

Take d/d lnµ of both sides, and use dΓB/dµ = 0. This gives

(

∂

∂ lnµ
+ β(λR)

∂

∂λR
+ γmmR

∂

∂ lnmR
− nγ

)

Γ̃
(n)
R (p1, . . . pn; λR, mR, µ) = 0
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Here

β(λ) ≡
d

d lnµ
λR

γ = 1
2

d

d lnµ
lnZφ

γm =
d lnmR

d lnµ
.

This is the Callan-Symanzik equation. It can be integrated, to relate the renormalized

Greens functions at different scales µ and µ′. Let us focus on what β and γ mean.

• Understand what β and γ mean: the bare quantities are some function of the

renormalized ones and epsilon. E.g. for λφ4 in MS we have

λB = µε(λ + δλ) ≡ µελZλ

Let us write

Zλ ≡ 1 +
∑

k

ak(λ)ε−k,

where we found a1(λ) = +3λ/16π2 to one loop. The bare parameter λB is independent

of µ, whereas λ depends on µ, such that the above relation holds. Take d/d lnµ of both

sides,

0 = ελZλ + β(λ, ε)Zλ + β(λ, ε)λ
dZλ

dλ
.

Using the above expansion for Zλ and requiring that β(λ, ε) be regular at ε = 0, so

β(λ, ε) = β(λ) +
∑

n βnεn, gives

β(λ, ε) = −ελ + β(λ)

β(λ) = λ2 da1

dλ

λ2 dak+1

dλ
= β(λ)

d

dλ
(λak).

The beta function is determined entirely from a1. The ak>1 are also entirely determined

by a1. In k-th order in perturbation theory, the leading pole goes like 1/εk.

We find for λφ4

β(λ) =
3λ2

16π2
+ O(λ3).

Integrating, this gives

λ = λ0

(

1 −
3

16π3
λ0 ln(µ/µ0)

)−1

.
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We similarly have m2
B = Zmm2

R and

γm(λ) = 1
2λ

dZ
(1)
m

dλ
= 1

2

λ

16π2
−

5

12

λ2

6(16π2)2
+ . . .

where Z
(1)
m means the coefficient of 1/ε and . . . are higher orders in perturbation theory,

and

γφ = −1
2λ

d

dλ
Z

(1)
φ =

1

12

λ2

(16π2)2
+ . . .

For any gauge invariant field φ, we always have γφ ≥ 0, where γφ = 0 iff it is a free field.

This follows from the spectral decomposition result that Z ≤ 1.

• Note: β > 0 means the coupling is small in the IR, and large in the UV. Such

theories are “not asymptotically free” or are “IR free.” Most theories are like this, e.g.

λφ4, QED, Yukawa interactions. If β < 0, then the coupling is small in the UV, and large

in the IR. Such theories are “asymptotically free;” only non-Abelian gauge theories, like

QCD, are like that.
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